
Forecasting and Managing Correlation Risks∗

Tim Bollerslev†, Sophia Zhengzi Li‡, and Yushan Tang§

First Draft: June 2, 2022

This Version: March 15, 2024

Abstract

We propose a novel and easy-to-implement framework for forecasting correlation risks

based on a large set of salient realized correlation features and the sparsity-encouraging

LASSO technique. Considering the universe of S&P 500 stocks, we find that the

new approach manifests in statistically superior out-of-sample forecasts compared to

commonly used procedures. We further demonstrate how the forecasts translate into

significant economic gains in the form of higher pairs trading profits, better equity

premium predictions, more accurate portfolio risk targeting, and superior overall risk

control and minimization.

JEL Classification: C13, C14, C52, C53, C55, C58.

Keywords: Correlation forecasting; high-frequency data; LASSO; risk targeting and

control; pairs trading; equity premium prediction.

∗We thank Charles Clarke, Nicola Fusari, Clifton Green, Amit Goyal, Hao Jiang, Yuan Liao, Markus
Pelger, Dave Rapach, Junbo Wang, Peixuan Yuan, Guofu Zhou, conference participants at NBER Big Data
and High-Performance Computing for Financial Economics Conference, WFA Annual Meeting, CICF Annual
Meeting, Shanghai Forum by Fudan University, Australasian Finance and Banking Conference, Machine
Learning and Financial Econometrics Workshop at Oxford-Man Institute, AFA Annual Meeting, MFA Annual
Meeting, and seminar participants at Durham University, Rutgers Business School, Renmin University, the
Virtual Derivatives Workshop, and University of Rhode Island for their helpful comments and suggestions.
We also acknowledge the Q Group for granting us the 2023 Jack Treynor Prize.

†Duke University, NBER and CREATES, Durham, NC 27708; E-mail: boller@duke.edu.
‡Rutgers Business School, Newark, NJ 07102; E-mail: zhengzi.li@business.rutgers.edu.
§Nankai Business School, Tianjin, 300071, China; E-mail: ytang@nankai.edu.cn.



1. Introduction

A proper understanding of the likely co-movement among asset returns is crucial for

asset pricing, portfolio construction, and risk management alike. We propose a new and

easy-to-implement framework for forecasting correlation risks of stocks by explicitly focusing on

out-of-sample prediction rather than in-sample statistical inference. Our approach succinctly

combines so-called feature engineering and model fitting into a coherent framework. In the

feature engineering step, we consider a number of variables that have previously been used in

the literature, together with several new purposely designed features. In the model fitting

step, we deliberately select the most useful features through the use of sparsity-encouraging

estimation procedures. Our empirical results, based on intraday high-frequency data for a large

sample of S&P 500 stocks spanning several decades, demonstrate highly statistically significant

improvements in the accuracy of the out-of-sample forecasts compared to commonly used

popular benchmark models. These statistical improvements also translate into substantial

economical gains in portfolio construction, risk control, and return prediction, further

underscoring the practical value of the new procedures.

Guided by the ideas of Kelly et al. (2022) among others, encouraging the use of

all plausibly relevant predictors to improve the performance of machine learning-based

procedures, we consider several alternative feature sets, each of which might ostensibly contain

useful predictive information.1 Consistent with well-documented autoregressive dynamic

dependencies in correlations, the first feature set naturally consists of lagged daily, weekly,

and monthly realized correlation measures, together with their semicorrelation extensions as

formally defined below. The second feature set utilizes the common factor structures of stock

returns by combining the high-frequency market data with low-frequency firm-characteristics

through matrix projection. The third feature set considers a smoothed version of the realized

correlations that explicitly incorporates sector information into the more traditional measures.
1See also Giglio et al. (2022) for a survey of recent methodological contributions in asset pricing involving

the use of factor models and techniques adopted from machine learning.
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Having defined the different feature sets, we next develop a correlation forecast model by

simultaneously combining all features into a simple linear model. We consider both ordinary

least squares (OLS) and the sparsity-encouraging least absolute shrinkage and selection

operator (LASSO) (Tibshirani, 1996) for fitting the models. We find that jointly fitting all

features via OLS typically outperforms the popular benchmark HAR forecasting model (Corsi,

2009). However, sparsely fitting the features via LASSO results in additional significant

improvements over all the OLS-based models. One key step of the LASSO fitting underlying

these results consists of model selection via validation, in which we dynamically split the

sample into separate training and validation sets used for estimation and prediction-model

selection, respectively. This approach in turn reveals interesting time-varying patterns in the

selected features in concert with varying economic and financial market conditions.

To more concretely evaluate the economic significance of the new correlation forecasting

models, we also consider four distinct practical applications. In the first application, we study

the augmented pairs trading strategy of Chen et al. (2019). We show that our new correlation

forecasting models significantly improve the equal-weighted (value-weighted) strategy returns

to 9.34% (8.85%) per annum from 3.63% (6.14%) based on HAR-model predictions. Our

second application is motivated by Pollet and Wilson (2010), and the findings reported

therein that the average correlation among individual stock returns is able to predict the

aggregate return on the market. We show that the predicted correlations from our new

models result in significantly stronger predictive power, with adjusted monthly R2’s for the

equal-weighted (value-weighted) market index of 1.91% (2.12%), compared to 0.74% (0.60%)

for the traditional HAR-based forecasts, and are comparable to some of the best market

predictors. Our third application evaluates the risks of various long-short portfolio strategies

and style-tilts, for which we compare the realized portfolio risks to their forecasted risks based

on the competing risk models. We again find that our new model forecasts notably improve

the consistency between realized and predicted risks, with the average risk-targeting ratio

from LASSO across all strategies equal to 1.02, versus 0.83 from the HAR-based forecasts.
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Our fourth, and final, application considers the construction of Global Minimum Variance

(GMV) portfolios. We show that the new forecasting models achieve the lowest realized risks

for the GMV portfolios. In addition, relying on the utility framework of Fleming et al. (2003),

we show that a risk-averse beta-neutral GMV investor would be willing to sacrifice up to

6.07% annually to switch from the simple HAR-based forecasts to our new LASSO-based

forecasts.

To address issues of robustness and sensitivity, we further split the full sample into smaller

subsamples. Doing so, we find that although the overall quality of the model fits differs

somewhat over different subsamples, the LASSO-based models consistently deliver superior

out-of-sample forecasts, the forecasts for the recent COVID-19 period included. We also

investigate possible gains afforded by the use of other economically motivated features based

on a wide variety of different notions of firm linkages. However, none of these additional

features significantly improves the accuracy of the out-of-sample forecasts compared to the

forecasts based on our three specifically engineered feature sets. We also explore the use of

alternative fitting procedures adopted from the machine learning (ML) literature, including

Ridge Regression, Elastic Net, Principal Component Regression, and Feed-Forward Neural

Networks. Again, none of these more complicated fitting procedures improves significantly

on the simple-to-implement LASSO-based forecasts.

We make a number of contributions to the literature. First, our construction of the

new feature sets specifically designed for correlation forecasting that succinctly combines

the information from high-frequency market data and low-frequency fundamental data is

decidedly new. Second, our use of sparsity-encouraging fitting techniques as a way to robustly

exploit big data with many observations and features for more accurate large-scale correlation

forecasting is similarly new to the literature. Third, our illustration of the strong economic

gains afforded in a wide range of practical applications adds importantly to our understanding

of the new procedures and further underscores the value of better risk forecasts more generally.

Our paper is related to several strands of literature. Most closely perhaps, to the large
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financial econometrics literature, dating back to Engle (2002) and Tse and Tsui (2002), on

modeling time-varying conditional correlations using GARCH-type models. Relatedly, the

parametric models proposed by Cappiello et al. (2006) and Audrino and Trojani (2011)

explicitly allow for asymmetric dynamic dependencies in the conditional correlations. These

multivariate GARCH-type models have also subsequently been extended to incorporate

realized variation measures in the construction of more accurate forecasts; see, e.g., Noureldin

et al. (2012) along with the more recent paper by Bollerslev et al. (2020b) and the many

other studies discussed therein. Johansson et al. (2023) propose a relatively simple extension

of Engle (2002) that produces covariance matrix prediction at least as good as MGARCH.

Instead, we focus directly on forecasting the realized correlation measures constructed from

intraday data. The idea of directly modeling and forecasting realized variation measures

dates back to Andersen et al. (2003), and it has been explored extensively in the literature

since then, albeit mostly in the context of forecasting realized variances; see also the recent

discussion and literature review in Bollerslev (2022). Meanwhile, our paper is distinct from

this existing literature by allowing for more flexible dynamics and a much wider set of

predictor variables than has hitherto been considered in the literature.

The paper also adds to the burgeoning literature on the use of ML techniques for financial

decision makings. In addition to the already large existing literature devoted to return

prediction, as exemplified by Rapach et al. (2013), Gu et al. (2020), Li and Rossi (2021),

Bali et al. (2022), Chen et al. (2023), Kaniel et al. (2022) and Bali et al. (2023), our paper

is most closely related to the recent literature on applying ML techniques for the purpose

of risk management. The studies by Audrino and Knaus (2016), Bucci (2020), Li and Tang

(2022), and Christensen et al. (2023), in particular, all rely on ML learning algorithms for

univariate volatility forecasting, while Bollerslev et al. (2022a) do so for covariance matrix

forecasting. Bollerslev et al. (2022b) similarly adapt ideas from ML to cluster stocks into

groups based on their realized risk characteristics. Our new approach differs from these

existing studies in two important dimensions. First, our work focuses on specifically designed
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and economically motivated new feature sets and a deliberately chosen fitting technique

for building reliable forecasting models. Second, rather than focusing on pure statistical

assessments of the correlation predictions, we further demonstrate the economic value of the

new procedures for a range of practical financial applications.

The paper is also related to the large finance literature on stronger comovements among

certain types of stocks, including S&P 500 index constituents (Barberis et al., 2005), firms

with similar institutional ownership (Pindyck and Rotemberg, 1993), firms with headquarters

in the same geographical location (Pirinsky and Wang, 2006), and firms with similar analyst

coverage (Muslu et al., 2014; Hameed et al., 2015; Israelsen, 2016), to name but a few. In

contrast to all these studies, however, which primarily focus on causal relations between firm

linkages and asset price movements, we focus explicitly on the prediction of future stock

return correlations. In so doing, we show empirically that these previously established causal

firm-connections provide limited predictive power over and above that afforded by the new

specifically designed features proposed here.

The paper is organized as follows. Section 2 discusses the data and the different features

underlying our empirical analyses. Section 3 summarizes the details of the machine learning

methodology that we rely on. Section 4 compares the statistical out-of-sample forecasting

performance of the new models to existing procedures. Section 5 highlights the economic

significance of our new forecasting models by considering their uses in four distinct practical

applications. Section 6 summarizes the results from additional robustness checks and empirical

analyses. Section 7 concludes. Further details regarding various modeling choices along with

additional summary statistics and data construction are deferred to an Appendix.
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2. Data and variables

2.1. Data

We consider the universe of stocks that were ever constituents of the S&P 500 index and

have full historical data from the NYSE Trade and Quote (TAQ) database between January

2000 and December 2020. We further require the stocks to be listed on the New York

Stock Exchange (NYSE), National Association of Securities Dealers Automated Quotations

(NASDAQ), and the American Stock Exchange (AMEX) with share codes of 10 or 11, prices

between $1 and $1,000, and daily number of trades greater than or equal to 100. To alleviate

concerns about bid-ask bounce effects (Roll, 1984) that together with non-synchronous prices

are well-known to induce downward biases in correlation estimation at ultra high frequencies

(Epps, 1979), we rely on 15-minute intraday returns based on “coarsely” sampled mid-quote

prices.2 Some of our realized features require a history for their construction. To accommodate

this, we use the data between 2000 and 2002 to compute the initial observations for these

variables, fixing January 2003 as the common start date for our full-sample analysis. All in

all, this leaves us with a final stock sample consisting of 417 unique S&P 500 stocks with full

historical data for all features and response variables over the period from January 2003 to

December 2020.

We also consider two additional sets of stock-level data for our feature construction and

performance evaluation. The first set consists of 15 representative anomalies, including the

11 mispricing anomalies from Stambaugh et al. (2012), together with the traditional CAPM

Beta, Size, Book-to-Market, and Reversal measures. We further complement this first set of

anomalies with a set of 15 additional firm descriptors that have also been widely studied

in the literature, including measures related to firm earnings, growth, and momentum. All

of the anomalies are constructed following Green et al. (2013) and Chen and Zimmermann

(2022) based on data from Compustat and CRSP. More detailed discussion and summary
2As discussed further below, our choice of a 15-minute sampling frequency also mirrors that of many

other recent studies; see, e.g., Fan et al. (2016) and Bollerslev et al. (2020a).
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statistics are provided in the Appendix.

2.2. Response variable

Our main research objective centers on the development of better predictive models for

monthly correlations. Accordingly, we rely on measures of monthly realized correlations

as our response variable. Our use of the realized correlation measures may be formally

justified by the theory of quadratic variation. In particular, assuming that the joint dynamics

of the stocks adhere to some underlying arbitrage-free Itô semimartingale vector process

(Back, 2010), the true covariance matrix over a given time interval, like a day or a month,

may then be consistently estimated by the summation of ever finer sampled within-interval

cross-products of returns (Andersen et al., 2003; Barndorff-Nielsen and Shephard, 2004).

To set up the requisite notation, let pi,τ denote the natural logarithm of stock i’s price on

day τ . Assume that intraday prices are observed at n + 1 equally spaced time intervals from

day τ to day τ + 1, say pi,τ , pi,τ+1/n, ..., pi,τ+1, with the corresponding returns denoted by

ri,τ−1+k/n ≡ pi,τ−1+k/n − pi,τ−1+(k−1)/n for k = 1, ..., n. The annualized daily realized variance

for stock i on day τ and the realized covariance between stocks i and j on day τ are then

simply constructed as:

RVi,τ ≡ 252 ×
n∑

k=1
r2

i,τ−1+k/n, RCovij,τ ≡ 252 ×
n∑

k=1
ri,τ−1+k/n · rj,τ−1+k/n. (1)

Although the theory formally underlying consistency of the realized measures calls for the

use of increasingly finer sample intraday returns, or n → ∞, as previously noted to help

mitigate the effects of non-synchronous trading and other market microstructure effects that

might bias the estimates, in the results reported on below we deliberately rely on a “coarse”

15-minute sampling frequency, or n = 27.3 In addition, to obtain an estimate of the variation

for the entire day, we follow common practice in the literature (see, e.g., Hansen and Lunde,
3The volatility signature plot (as defined by Andersen et al., 2000) for the realized correlations in the

Appendix further underscores the soundness of that choice.
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2005) and include the overnight returns in the calculations of the full-day RV d’s and RCovd’s.

We obtain longer-run weekly and monthly measures, denoted by RV w’s, RCovw’s, RV m’s

and RCovm’s in the sequel, by averaging the daily measures over one week and one month,

respectively.

In line with the majority of the existing asset pricing literature, we will primarily focus

on a one-month forecast horizon. Accordingly, to facilitate the notation we will often drop

the m superscript and use the time index t to refer to a month. Correspondingly, we will

denote the monthly realized correlation matrix by RCt, as implicitly defined by:4

RCovt =
√

RVt · RCt ·
√

RVt, (2)

where RVt refers to the diagonal matrix with the month-t realized variances along the diagonal,

and RCovt denotes the month-t realized covariance matrix. There is, of course, already a

vast literature on modeling and forecasting realized variances; see, e.g., the recent discussions

and literature reviews in Bollerslev et al. (2018a), Li and Tang (2022), and Christensen et al.

(2023). We do not seek to add to this literature, instead focusing our empirical analyses

exclusively on realized correlation forecasting and practical applications thereof.

Meanwhile, it is well-established that RVt and RCt tend to exhibit quite different dynamic

dependencies (see, e.g., the discussion in Oh and Patton, 2016). To illustrate, Figure 1 plots

the 12-month moving average of the cross-sectional means of the monthly realized correlations

and realized variances over the full sample period. Even though the time series of realized

correlations appear relatively stable, and clearly more so than the realized variances, the series

still reveals non-trivial temporal variation in the cross-sectional average monthly realized

correlations, with noticeable higher values in the aftermath of the 2008 financial crisis, as

well as the recent COVID-19 period. Figure 2, which displays the unconditional distribution

of all the monthly realized correlations, further highlights the dispersion in the individual
4The CCC-GARCH model of Bollerslev (1990) and the DCC model of Engle (2002) also both rely on

this same decomposition for forecasting the covariance matrix RCovt through the separate modeling and
forecasting of RVt and RCt.
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monthly stock-pair correlations across time and stocks. We turn next to a discussion of the

different features that we use in the construction of the new and improved forecasting models

for said correlations.

2.3. Features

We begin our analysis by constructing a series of input features that potentially contain

predictive information for the one-month-ahead realized correlations. We consider three

separate sets of features: ones inspired by HAR-type models, features constructed from

common factors, and exponential-weighted realized features. We discuss each of the three

specific feature sets in turn.

2.3.1. Realized variation and semivariation features

The Heterogeneous Autoregressive (HAR) model proposed by Corsi (2009) has arguably

emerged as the benchmark model for realized volatility-based forecasting. The model is

designed to succinctly capture the effects of heterogeneous short-, medium- and long-term

signals with the forecasts of future volatilities based on linear combinations of lagged daily,

weekly, and monthly realized volatilities. Motivated by the success of the traditional HAR

model for forecasting RV s, our first feature set for forecasting the month t + 1 correlation for

stocks i and j similarly includes the lagged daily, weekly, and monthly realized correlations

for the same two stocks, say RCd
ij,t, RCw

ij,t, and RCm
ij,t. We will also refer to models based on

just these three features as HAR models for short.

Moreover, motivated by Barndorff-Nielsen et al. (2010) and Patton and Sheppard (2015)

and the empirical findings reported therein that HAR-type volatility forecasting models may

be improved by including separate “bad,” or downside, realized volatility measures constructed

from the summation of squared negative high-frequency returns (see the recent discussion in

Bollerslev, 2022), we also include daily, weekly and monthly negative realized semicorrelation

measures in our first feature set. In particular, following Bollerslev et al. (2020a), the

9



annualized daily realized negative semicovariance is naturally defined by restricting the

summation in (1) to the products of the negative intraday returns only:

RCovd−
ij,τ = 252 ×

n∑
k=1

ri,τ−1+k/n1{ri,τ−1+k/n<0}rj,τ−1+k/n1{rj,τ−1+k/n<0}. (3)

In parallel to the construction of the weekly and monthly realized covariances, the longer

horizon RCov−’s may similarly be obtained by averaging the daily RCov−’s defined in (3)

over the relevant horizon, in turn allowing for the construction of the corresponding daily,

weekly, and monthly semicorrelation measures, say RCd−
ij,t, RCw−

ij,t , and RCm−
ij,t . In total, this

leaves us with six realized features, RCd, RCw, RCm, RCd−, RCw−, and RCm−, specifically

designed to capture autoregressive dynamic dependencies as well as possible asymmetric

responses to signed price movements. Following the nomenclature for realized volatility

models in Patton and Sheppard (2015), we will refer to correlation forecasting models based

on these six features as SHAR models in the sequel.

2.3.2. Factor-driven features

A slew of factor models have been proposed in the literature to account for the joint

dependencies among returns through the decomposition of the total return co-movements into

factor-driven and residual components. Notable examples include the capital asset pricing

model (CAPM) of Sharpe (1964) and Lintner (1965), the three- and five-factor models of

Fama and French (1993) and Fama and French (2015), the q-factor model of Hou et al.

(2015), and the mispricing-factor model of Stambaugh and Yuan (2016). Several papers have

further demonstrated the advantages of exploiting the factor structures in the formulation

and estimation of covariance matrix forecasting models; see, e.g., Chan et al. (1999), Hansen

et al. (2014), and Fan et al. (2016). Intuitively, if a factor model perfectly describes the

common return variation, then the pairwise return co-movements should be entirely driven

by the factors. In this situation, the factor-driven correlation components may naturally

be interpreted as “de-noised” versions of the total correlations, and the inclusion of these
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components as additional features may therefore help in the prediction of the RC’s more

generally.

The true factors, of course, are not known. Instead, following Fama and French (2020)

and Li et al. (2023) we rely on observable characteristics as factor loadings to “back out” a set

of factor-driven correlation features.5 Specifically, assuming that the N × 1 vector of returns

is driven by K common factors, the realized covariance matrix for the returns may then

be decomposed as RCov = L · RCovf · L′ + RCovϵ, where L denotes the N × K matrix of

factor loadings, RCovf denotes the K × K factor covariance matrix, and RCovϵ refers to an

N × N residual covariance matrix. The off-diagonal elements in RCovϵ account for the return

covariation that is not explained by the common factors. Correspondingly, the factor-driven,

or the “de-noised,” covariance matrix may thus be expressed as L · RCovf · L′ + Diag(RCovϵ).

The diagonal elements of that matrix naturally coincide with the diagonal elements of RCov.

To obtain the off-diagonal elements, we substitute (L′L)−1L′ · RCov · L(L′L)−1in place of

RCovf , resulting in the factor-driven covariance matrix estimate:

RCovF = L(L′L)−1L′ · RCov · L(L′L)−1L′ + Diag(RCovϵ). (4)

This factor-driven covariance matrix at a given horizon may therefore be estimated from the

observable characteristic matrix L and the realized covariance matrix RCov at that same

horizon.6

In the empirical results discussed below, we rely on a loading matrix L comprised of 15

representative anomalies and firm characteristics, including the 11 mispricing anomalies from

Stambaugh et al. (2012) together with the usual CAPM Beta, Size, Book-to-Market, and

Reversal measures.7 Since the anomalies vary quite substantially in terms of their sample
5Clarke and Linn (2024) offer empirical evidence suggesting that characteristics can proxy for systematic

risk exposure.
6A similar approach has also previously been used by Fan et al. (2016) in their estimation of the factor

covariance matrices from high-frequency factors formed by firm characteristic sorts.
7Table A.1 in the Appendix provides further details and summary statistics for each of the 15 anomaly

variables.
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means and standard deviations, we follow Gu et al. (2020) and rank-transform each anomaly,

except for the CAPM Beta, into the [-1, 1] interval. Having estimated the daily, weekly,

and monthly RCovF covariance matrices, we finally covert each of them into correlation

matrices. All said and done, this leaves us with three additional daily, weekly, and monthly

factor-driven realized correlation features, denoted by FRCd, FRCw, and FRCm, respectively.

We will refer to forecasting models based on the previous six realized features and these three

additional factor-driven features as SHAR-F models.

2.3.3. Exponentially weighted realized features

Our third and final feature set is directly motivated by the Heterogeneous Exponential

Realized Volatility (HExpRV) model recently proposed by Bollerslev et al. (2018a). This

model provides a particularly simple framework for flexibly incorporating longer-run dynamic

dependencies into realized-volatility-based forecasting by exploiting the use of exponentially

weighted moving averages (EWMA) of lagged daily realized volatilities.

Analogously defined exponential-weighted negative semivariance, covariance, and negative

semicovariance measures, may readily be constructed as:

ExpRV
− CoM(λ)

i,τ =
500∑
k=1

e−kλ

e−λ + e−2λ + ... + e−500λ
RV d−

i,τ−k+1,

ExpRCov
CoM(λ)
ij,τ =

500∑
k=1

e−kλ

e−λ + e−2λ + ... + e−500λ
RCovd

ij,τ−k+1,

ExpRCov
− CoM(λ)
ij,τ =

500∑
k=1

e−kλ

e−λ + e−2λ + ... + e−500λ
RCovd−

ij,τ−k+1,

(5)

where λ defines the decay rate of the weights, and CoM(λ) refers to the corresponding

center-of-mass formally given by CoM(λ) = e−λ/(1 − e−λ).8 The center-of-mass effectively

captures the “average” horizon of the lagged daily measures on which a given Exp measure

is based. We construct ExpRV , ExpRV −, ExpRCov, and ExpRCov− measures with

center-of-mass equal to 1, 5, 21, and 63 trading days, corresponding to half-lifes of one day
8Conversely, for a given center-of-mass, the corresponding decay rate equals λ = log(1 + 1/CoM).
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(d), one week (w), one month (m), and one quarter (q), respectively. We then convert the

resulting variance and covariance terms defined by ExpRV and ExpRCov, and ExpRV −

and ExpRCov−, respectively, into their respective exponential-weighted realized correlation

and negative semicorrelation features, denoted by ExpRCd, ExpRCw, ExpRCm, ExpRCq,

ExpRCd−, ExpRCw−, ExpRCm−, and ExpRCq− in the sequel.

Additionally, in light of the strong within-sector asset co-movements previously documented

in the literature (see, e.g., Fan et al., 2016; Herskovic et al., 2016), we also consider a series of

sector-specific exponentially weighted realized features. We begin by dividing all of the stocks

in our sample into sectors.9 For each of the eight exponential features defined above and each

sector Sc, we then compute the average value of the features across all of the stock pairs within

a particular sector, denoting the resulting sector-specific exponentially weighted realized

features by ExpScRCd, ExpScRCw, ExpScRCm, ExpScRCq, ExpScRCd−, ExpScRCw−,

ExpScRCm−, and ExpScRCq−, respectively. If a pair of stocks belong to different sectors,

their sector-specific features are all set to zero. This in turn leaves us with 16 additional

features. We will denote SHAR-F models that include all of these additional features as

SHAR-F-Exp models for short.

2.3.4. Feature summary statistics

The three different feature sets discussed above comprise a total of 25 unique correlation

predictors.10 Table 1 reports a series of descriptive statistics for each. There are several

noticeable patterns. First, the sample means of all the features are positive, indicative of

on-average positive stock co-movements. Second, the means of the factor-driven realized

features (FRC’s) are only slightly below those measured from the returns (RC’s), suggesting

that much of the co-movement among the stocks can indeed be accounted for by common
9Our sector classifications are based on the first two digits of the stocks’ Global Industry Classification

Standard (GICS) codes from Compustat. The ten sectors include: Energy (10), Materials (15), Industrials
(20), Consumer Discretionary (25), Consumer Staples (30), Health Care (35), Financials (40), Information
Technology (45), Communication Services (50), and Utilities (55).

10To avoid any numerical issues, we further bound all of the empirically calculated features to lie in the
unit interval, by replacing any values above (below) 1 (-1) with 1 (-1).
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factors. Third, the negative realized semi-features (RC−’s, ExpRC−’s, and ExpScRC−’s)

tend to have higher means than their unsigned counterparts (RC’s, ExpRC’s, and ExpScRC’s),

consistent with the idea of stronger asset co-movements during market downturns. Fourth,

the exponential realized features (ExpRC’s) generally have lower standard deviations than

the more traditional calendar-based realized features (RC’s) due to the greater number of

lagged daily realized correlations used in the smoothing. Lastly, the sector-specific exponential

features (ExpScRC’s and ExpScRC−’s) naturally have the lowest overall sample means, as

they are fixed at zero for any stock pair belonging to different sectors.

3. Estimation methodology

Our competing forecasting models are based on linear specifications and two fitting procedures:

Ordinary Least Squares (OLS) and the Least Absolute Shrinkage and Selection Operator

(LASSO). The former entails a pre-defined set of predictors, whereas the latter performs

variable selections to reduce the dimension of the feature sets as part of the model estimation.

3.1. Training and validation

In parallel to other machine learning algorithms, LASSO requires a validation set for tuning

its hyperparameter(s). In the case of LASSO, this amounts to a single penalty parameter on

the sum of the absolute slope coefficients, which succinctly controls the number of predictors

used in the forecasting model. This hyperparameter should naturally be tuned based on

the prediction error rather than the training error, to prevent LASSO from overfitting the

training sample and performing poorly out-of-sample. Accordingly, we adopt a traditional

training-validation-testing scheme for our hyperparameter calibration and model assessment.

To enhance the efficiency of the estimates, rather than fitting the models on a pair-by-pair

basis, we instead fit “pooled models” based on the panel of all the pairwise realized correlations.

Specifically, at the end of year t, we divide the sample into three parts: a training set consisting

14



of data from year t − 4 to year t − 1, a validation set consisting of year t data, and a testing

set consisting of year t + 1 data. We then refit the models every year by rolling the training,

validation, and testing sets one year forward. Given the 417 × (417 − 1)/2 = 86, 736 unique

stock pairs per month, each 4-year training sample thus includes 4,163,328 observations,

allowing us to estimate models with many features. Importantly, our rolling-window scheme

also allows the features selected by LASSO to dynamically enter and exit the prediction

models based on recent market conditions.

By contrast, our OLS-based prediction models rely on the same set of features throughout.

Correspondingly, since the models estimated by OLS do not require validation sets for

hyperparameter tuning, we use data from year t − 4 to t for their estimation and the data in

year t+1 for testing, thereby ensuring identical testing samples for the OLS and LASSO-based

models.

3.2. Model fitting and LASSO

All of the forecasting models discussed in the main part of the paper are based on simple linear

combinations of the different features, say f(xij,t; θ) ≡ x′
ij,tθ, where x′

ij,t denotes the feature

vector for stock pair (i, j) in month t and θ is the unknown parameter to be estimated. Unlike

OLS, LASSO estimates θ through a penalized L1 loss function. Specifically, to determine the

best predictor for the monthly correlation for stock pair (i, j), LASSO seeks to minimize:

LLASSO(θ; λ) = 1
N

∑
(ij,t)∈T

(RCm
ij,t+1 − x′

ij,tθ)2 + λ
P∑

p=1
|θp|, (6)

where T denotes a given training sample, N is the number of observations in that training

sample, and λ refers to the shrinkage parameter that controls the degrees of penalty on the

coefficients. For λ = 0, the LASSO estimator obviously collapses to standard OLS. However,

when λ > 0, LASSO is capable of setting some of the coefficients to be exactly zero, thereby

reducing the parameter estimation error and potentially also making the model easier to

interpret.
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Meanwhile, to allow for meaningful feature selection, we need to normalize the features to

have comparable magnitudes, as otherwise a single λ would have vastly different shrinkage

effects on different features, making the model impossible to tune. To prevent any look-ahead

bias, we therefore further normalize each feature by its training-sample mean and standard

deviation. Consistent with the rolling-window scheme detailed in the previous section, the

mean and standard deviation are calculated once per year. To allow for various levels of

sparsity, we consider a wide range of different values of λ, choosing the final preferred model

and values of θ and λ from this collection of models.

We turn next to a discussion of the resulting out-of-sample predictive performance obtained

by the various OLS and LASSO-based models.

4. Out-of-sample forecast performance

We begin our assessment of the statistical out-of-sample forecasting performance, by demonstrating

the forecast gains available by including additional features over-and-above the traditional

HAR-type features in OLS-based models. We then illustrate the benefits of LASSO over

the traditional OLS-based models. Finally, we analyze the sparsity of the LASSO-selected

features and their dynamic patterns through time.

4.1. Performance evaluation measures

Following common practice in the literature, we focus our statistical assessment of the different

models on their out-of-sample R2’s relative to the HAR model, which as previously noted

has emerged as the benchmark model for realized volatility-based forecasting. Specifically:

R2,EW
OOS (θ) = 1 −

∑
(ij,t)∈T ′(RCm

ij,t − R̂C
m,θ

ij,t )2∑
(ij,t)∈T ′(RCm

ij,t − R̂C
m,HAR

ij,t )2
, (7)
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where R̂C
m,θ

ij,t refers to the forecasts from model θ, R̂C
m,HAR

ij,t denotes the forecasts based

on the traditional HAR features and OLS-based estimation, and T ′ defines the specific

testing sample.11 Accordingly, a positive R2,EW
OOS (θ) indicates that model θ achieves smaller

out-of-sample prediction mean squared errors than the benchmark HAR model. To ensure that

our evaluation is not primarily driven by small-cap firms, we also calculate a value-weighted

version of the R2
OOS as:

R2,V W
OOS (θ) = 1 −

∑
(ij,t)∈T ′ ωij,t(RCm

ij,t − R̂C
m,θ

ij,t )2∑
(ij,t)∈T ′ ωij,t(RCm

ij,t − R̂C
m,HAR

ij,t )2
, (8)

where ωij,t denotes the product of the market capitalizations for stocks i and j normalized to

sum to unity.12

To more formally assess the statistical significance of the numerical differences in the

out-of-sample R2s, we also implement a simple modified Diebold and Mariano (1995) (DM)

test for pairwise comparison of two models based on the difference in the out-of-sample

squared error losses. Specifically, for stock pair (i, j) in month t, we define the loss differential

as dij,t = (ê(1)
ij,t)2 − (ê(2)

ij,t)2, where ê
(1)
ij,t and ê

(2)
ij,t denote the prediction errors from each of the

two models. For each stock k, we then compute the average of the resulting loss differentials

across all the stock pairs containing that stock. That is:

dk = 1
NkT

∑
ij,t

dij,t1{i=k or j=k,i̸=j}, (9)

where Nk denotes the number of stock pairs containing stock k in each month, and T refers

to the total number of months in the entire testing sample. Our modified DM test statistic is

obtained as DM = d̄/σ̂d, where d̄ and σ̂d denote the cross-sectional mean and standard error

of dk. In parallel to the value-weighted R2 defined above, we also construct a value-weighted
11To ensure the predicted correlations are bounded between [-1, 1], we also apply an “insanity filter” and

replace any predictions that fall outside that interval with 1 and -1, respectively.
12The past two decades have witnessed the exceptional growth of many high-tech firms, and the 10 largest

stocks in the S&P 500 now make up around 30% of the index’s market value. Accordingly, we purposely
winsorize market capitalization at 90% to control for the effect of mega firms.
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version of this modified DM test statistic by applying the product-based weights to the loss

differentials.

4.2. Forecast performance

Table 2 reports the resulting performance measures for the three increasingly more complex

OLS-based models discussed in Section 2.3, together with the LASSO-based predictions

outlined in Section 3.2. For ease of reference, the second column summarizes the specific

features included in each of the models.

Looking first at Panel A and the out-of-sample R2’s, we observe the same ranking for

the equal-weighted R2,EW
OOS ’s and the value-weighted R2,V W

OOS ’s defined in equations (7) and (8),

respectively, suggesting that our results are not simply driven by extremely large or small

firms. It is noteworthy that all of the models beat the traditional HAR model, albeit in the

case of the SHAR model not by much. Adding the factor-driven realized features FRC’s

to the SHAR model results in more noticeable improvements. When we further expand

the feature set to include the ExpRC and ExpScRC realized features, the resulting model

outperforms all the other OLS-based models by quite wide margins, with the equal-weighted

(value-weighted) R2
OOS relative to the HAR equal to 9.82% (7.31%), highlighting the benefit

of including the long-memory and within-sector spillover effects captured by these features.

Having established that the use of our new augmented feature sets can improve the

out-of-sample performance through simple OLS-based fits, the row labeled LASSO demonstrates

that additional improvements are available through the use of the LASSO algorithm.

Intuitively, some features may not contribute to the forecasts over the entire sample.

Accordingly, the dynamic regularization afforded by the LASSO algorithm may naturally

help in the dynamic selection of the most useful features thereby avoiding overfitting. At the

same time, even though LASSO does result in the highest R2
OOS among all of the models, the

improvements in the R2
OOS’s compared to the OLS-based SHAR-F-Exp model that always

includes all features may appear relatively minor.
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Hence, to more formally assess whether these and the other improvements observed in

Panel A are actually statistically significant, Panels B and C of Table 2 report the equal and

value-weighted DM t-statistics detailed in Section 4.1 for the pairwise comparisons of the

different models. A positive t-statistic in the table indicates that the “row model” outperforms

the “column model.” As the results show, all of the t-statistics for the LASSO-based

predictions are positive and strongly statistically significant. In other words, these results

again corroborate that LASSO systematically produces the lowest forecast errors, and

significantly so even compared to the all-encompassing SHAR-F-Exp model.

4.3. Feature selection

The sparsity engendered by the LASSO algorithm also brings with it easier interpretability

of the forecasting models, in the form of the dynamic patterns of the selected features and

their relative contribution to the overall predictions through time.

To illustrate, in each year in the testing sample, we calculate the absolute values of the

estimated LASSO coefficients normalized by the sum of the absolute values across all stock

pairs so that the scaled absolute coefficients add up to unity. Figure 3 presents the resulting

relative contributions of the 25 realized features across years. The plot confirms that the

LASSO models are indeed sparse-encouraging, with ten features selected per year on average.

Among all realized features, ExpRCq is the most important predictor, being present in all

testing samples and contributing around 50% overall to the predictions as measured by

its scaled absolute coefficient. RCw is also systematically selected, although it contributes

less than around 5% on average. Among the three traditional HAR predictors, the lagged

dependent variable RCm is selected in 10 out of 13 years with an average importance of

around 11%. The second set of frequently selected predictors includes the three short-term

signals, FRCd, FRCw, and ExpScRCd, each contributing around 4%. In other words,

“denoising” the features by common factors and taking into account within-sector spillover

effects are both valuable for correlation prediction. Lastly, although ExpRCm is only selected
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by LASSO in half of the testing years, its average contribution in those years is more than

15%, substantiating our early conjecture that certain features are only important under

certain market conditions.

Looking across the columns in Figure 3, we also observe several interesting patterns in

regard to the relative importance of different features through time. In particular, after

training the model using data from the financial crisis period, LASSO selects the most

sparse feature set (4 out of 25 features) to form predictions for the year 2010. This directly

illustrates the strength of LASSO over the OLS-based models which are not engineered to

adapt to changing market conditions. Moreover, even though several long-term predictors

are consistently selected by LASSO through time, different short-term signals enter and exit

the models, in concert with the varying strength of the underlying signals. All said and done,

however, the selected features do not change too dramatically from year to year, underscoring

the overall stability of the LASSO-based approach.

5. Applications

The previous section demonstrates that the LASSO-based predictions result in significantly

higher out-of-sample R2’s than all of the OLS-based models, the popular HAR model included.

In this section, we further evaluate the economic significance of the predictions by considering

four practical applications. In the first application, we construct an augmented pairs trading

strategy following Chen et al. (2019), and show that the use of our new forecasting model

substantially increases the return on the strategy. The second application builds on the finding

of Pollet and Wilson (2010) that the average correlation among stocks can predict aggregate

market returns. In the third application, we construct a series of long-short portfolios based

on popular trading strategies and find that our model significantly improves the consistency

between the realized and forecasted risks of the various portfolios. In the last application,

we show that covariance matrix forecasts based on our new correlation forecasting models

systematically achieve the lowest realized risks for the Global Minimum Variance (GMV)
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portfolio, resulting in substantial utility gains for a mean-variance investor.

5.1. Pairs trading

Pairs trading bets on the price convergence of pairs of stocks, or stocks with strong price

co-movements. When price divergence occurs, pairs traders take a long position in the

underperforming stocks and a short position in the overperforming stocks, hoping to profit

from the convergence. Building on Chen et al. (2019), we show how the better correlation

forecasts obtained from our new model can help improve the performance of such strategies.

For each stock i in month t, we compute the historical correlation between that stock

and each of the remaining 416 stocks in our S&P 500 universe using the time-series average

monthly realized correlation between month t−12 and t−1. We define the top 20 stocks with

the highest historical correlation with stock i as its pairs. We then compute the historical

correlation between stock i and its pair portfolio, say RCh
i,t, as the equal-weighted average of

the historical correlations between stock i and each of its pairs.

Denoting the equal-weighted average return across the stocks in the pair portfolio by

PReti,t, mimicking Chen et al. (2019), we measure return divergence RetDiffi,t between stock

i and its pair portfolio by:

RetDiffi,t = βi,t(PReti,t − rf,t) − (Reti,t − rf,t), (10)

where rf,t denotes the risk-free rate, Reti,t denotes return on stock i, and βi,t is the regression

coefficient from regressing stock i’s returns on its pair portfolio returns using daily data

between month t − 12 and t − 1. The intuition behind the pairs trading strategy is simple: if

in month t stock i’s return Reti,t is above (below) its pair portfolio return PReti,t after risk

adjustment, the price of the stock is likely overvalued (undervalued) and we expect it to go

down (up) next month. To implement the strategy, by the end of each month, we sort stocks

into quintile portfolios by RetDiff and form a long-short portfolio by buying stocks with high

RetDiff and selling stocks with low RetDiff.
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A key implicit assumption behind the above pairs trading strategy is the persistence of

correlations; i.e., a pair portfolio identified using the historical correlations for stock i is

expected to comove strongly with that same stock in month t+1, even if it exhibits temporary

price divergence in month t. This assumption may not always hold true, especially during

periods with volatile market conditions. Accordingly, we aim to improve the strategy by

explicitly incorporating correlation predictions into the portfolio construction. Specifically,

for stock i in month t, we compute its predicted correlation with its pair portfolio in month

t + 1 as the equal-weighted average predicted correlation with its pair stocks. To keep the

presentation manageable, we focus on the predictions from the HAR and LASSO-based

models, but similar results are available for the other forecasting models discussed above.

The difference between the predicted and historical correlations, ∆RCθ
i,t = R̂C

θ

i,t+1 − RCh
i,t,

where R̂C
θ

i,t+1 refers to the prediction from model θ available by the end of month t, naturally

captures the persistence of correlation between stock i and its pair portfolio. To identify

stocks whose prices are more likely to converge to their historical pairs next month, we sort

all the stocks into quintiles by their ∆RCθ in each month, keeping only the subset of stocks

in the highest quintile. We then sort these stocks into five quintiles by RetDiff to form a

long-short portfolio.

Panels A and B of Table 3 report the annualized equal-weighted and value-weighted

average returns of these quintile-sorted portfolios, along with the returns and t-statistics of the

spread portfolios.13 Looking first at the “Unconditional” strategy based on all of the S&P 500

stocks in our sample that does not take into account the persistence of the correlations, we see

that it results in rather poorly performing portfolios, with an equal-weighted (value-weighted)

spread of 1.15% (-1.20%) per year and a t-statistic of 0.47 (-0.45).14 By contrast, the long-short

portfolios formed by the subset of stocks within the highest ∆RCθ quintile based on the HAR
13For value-weighted quintile portfolios, we further impose the restriction that none of the weights exceed

10% to ensure that the portfolio is diversified.
14The pairs trading strategy in Chen et al. (2019) is formed based on a different stock universe over

the extended period from January 1931 to December 2007. However, from Figure 1 in their paper, the
value-weighted strategy also performed poorly towards the end of their sample period, with negative annual
returns in six out of nine years between 1999 and 2007. Their equal-weighted strategy performed better than
the value-weighted counterpart, yet it still generated a negative return in 2007 at the end of their sample.
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and LASSO correlation predictions all result in average positive returns. Intuitively, if model

θ is good at predicting next month’s correlations, the return convergence for the resulting pair

stocks is likely to be stronger. For stocks within the highest ∆RC quintile based on HAR,

the equal-weighted (value-weighted) return spread sorted by RetDiff does indeed increase to

3.63% (6.14%) per year, albeit statistically insignificant. Meanwhile, for the stocks within the

highest ∆RC quintile based on LASSO, the equal-weighted (value-weighted) return spread

increases to an impressive 9.34% (8.85%) per year, with a t-statistic of 2.30 (2.20). This

much stronger pairs trading profit among high-∆RCLASSO stocks thus again corroborates the

superior predictive power of our LASSO-based correlation forecasting model and illuminates

the value of incorporating better correlation predictions into pairs trading.

To further underscore the significance of the results, we also conduct a series of predictive

Fama-MacBeth cross-sectional regressions, controlling for the four Fama-French-Carhart

risk factors.15 To allow for a direct comparison with the previous single-sorting results, we

transform RetDiff into discrete values of [1, 2, 3, 4, 5], corresponding to the five stock quintiles

sort. Panel C of Table 3 reports the resulting estimated regression coefficients and t-statistics

under several model specifications. Consistent with our previous portfolio-based analyses,

RetDiff exhibits the most significant predictive power among stocks with the highest price

convergence rate (∆RC) as predicted by LASSO. For example, take the regressions with

control variables reported in the even-numbered columns. The coefficient for RetDiff increases

from 0.04 (t-statistic 0.97) in column (2) for the full stock sample, to 0.12 (t-statistic 1.80)

in column (4) for stocks within the highest ∆RCHAR qunitile, to 0.16 (t-statistic 2.33) in

column (6) for stocks within the highest ∆RCLASSO quintile. Given RetDiff takes integer

values between 1 and 5 representing the five RetDiff quintiles, moving up one quintile is

associated with an increase in annual return of 1.92% (0.16 × 12).

To illustrate how the long-short portfolios based on RetDiff perform over time, we compute
15We estimate Beta by regressing monthly stock excess returns on monthly market excess returns using

a 60-month rolling window. Size is the natural logarithm of the market value of equity, estimated by the
product of the closing price and the number of shares outstanding. Book-to-market ratio is the ratio of the
book value of common equity to the market value of equity. Momentum is estimated by the cumulative
return over the past 2 to 12 months.
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the cumulative profits of the equal-weighted and value-weighted strategies with an initial

investment of W1 = $1. Specifically:

Wt+1 = Wt × (1 + RH
t+1 − RL

t+1 + rf,t+1), (11)

where RH
t+1 and RL

t+1 are the monthly returns on the fifth and first quintile portfolios,

respectively, for a given strategy. Panels A and B of Figure 4 plot the resulting trajectories

of Wt+1 starting from February 2008. The portfolio value based on stocks within the highest

∆RCLASSO quintile continues to rise throughout the entire sample without major drawdowns.

In contrast, the value of strategies formed by stocks within the highest ∆RCHAR quintile

increases very minimally, and those of the unconditional strategies remain almost flat over

time. Altogether, the results lend further support to integrating more accurate correlation

forecasts from our LASSO-based model for enhanced pairs trading performance.

5.2. Equity premium predictions

Pollet and Wilson (2010) argue that the average correlation among stocks, say AvgCorr,

manifests aggregate systematic risks and therefore should help predict future aggregate market

returns.16 In their empirical analyses, they estimate the expected future average correlation

Et(AvgCorrt+1) based on the pairwise correlations computed from lagged daily returns. By

that same logic, the use of a superior correlation prediction model for Et(AvgCorrt+1) should

naturally result in stronger predictive power for the equity premium.

To test this conjecture, we estimate equal-weighted and value-weighted Et(AvgCorrt+1)

from predicted monthly realized correlation for each stock pair as:

AvgCorrθ,EW
t =

N∑
i=1

N∑
j=1, j ̸=i

1
N(N − 1)R̂C

m,θ

ij,t+1,

AvgCorrθ,V W
t =

N∑
i=1

N∑
j=1, j ̸=i

ωij,tR̂C
m,θ

ij,t+1,

(12)

16For a survey of the latest literature on market return predictability, see, e.g., Rapach and Zhou (2022).
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where R̂C
m,θ

ij,t+1 is the predicted realized correlation for month t + 1 from model θ using

information up to month t, EW and VW denote the equal and value-weighted average

correlations respectively, N is the total number of stocks, and ωij,t is the product of the

market capitalizations for stocks i and j normalized to sum to unity in each month.17 We

again focus on the HAR and LASSO-based predictions. As a benchmark, we also construct

historical equal and value-weighted average correlation based on the realized correlations RC

in month t.

Table 4 reports the results from predictive regressions for the one-month-ahead excess

return on the CRSP value-weighted market index. In addition to the different equal- or

value-weighted average correlation measures, we also report results from multiple regressions

in which we include the eight commonly used macroeconomic predictors from Welch and Goyal

(2008) as controls.18 From the simple regressions in the first three columns of each panel, the

AvgCorrH,EW and AvgCorrH,V W constructed from the historical realized correlation are never

significant. The AvgCorr measures constructed from the HAR-model predictions exhibit

stronger predictive power, albeit still insignificant with t-statistic of 1.47 (1.39) and adjusted

R2 of 0.74% (0.60%) for the equal-weighted (value-weighted) measure in the simple regression

without controls. By contrast, the AvgCorr measures constructed from the LASSO-based

correlation predictions all provide significant information for predicting future market returns

with t-statistics around two and much higher adjusted R2’s at 1.91% and 2.12%, respectively.

Importantly, these same qualitative results for the simple regressions carry over to the multiple

regressions with controls. In particular, only the AvgCorrLASSO measures positively and
17We further winsorized the firm capitalization at the 90% level for each month to avoid weighting

excessively on mega firms.
18All macroeconomic predictors are downloaded from Amit Goyal’s personal website. dp is the

dividend-price ratio computed as the difference between the log of 12-month moving sums of dividends and
the log of prices of S&P 500 index. ep is the earnings-price ratio calculated as the difference between the log
of 12-month moving sums of earnings and the log of prices of the S&P 500 index. bm is the book-to-market
ratio defined as the ratio of book value to market value for the Dow Jones Industrial Average. The net equity
expansion ntis is a ratio of 12-month moving sums of net issues by NYSE listed stocks divided by the total
end-of-year market capitalization of NYSE stocks. tbl is the 3-month Treasury Bill rate. tms is the difference
between the long-term yield on government bonds and the Treasury bill. dfy is the difference between BAA-
and AAA-rated corporate bond yields. svar is the sum of squared daily returns on the S&P 500.
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significantly predict next month’s market excess return, with t-statistics of 2.40 and 2.66

for the equal and value-weighted measures, respectively. Given the average cross-sectional

standard deviation of AvgCorrLASSO,EW (AvgCorrLASSO,V W ) is 0.0596 (0.0609), this means

that a one-standard-deviation increase in the average correlation predicts a nontrivial rise

in the market excess return of 0.0596 × 0.24 × 12 = 17.2% (0.0609 × 0.25 × 12 = 18.3%)

per annum. As such, these results again highlight the economic gains afforded by the more

accurate LASSO-based RC forecasting model.

5.3. Risk targeting

Having access to more accurate correlation predictions allows portfolio managers to better

assess the risk of their strategies while maximizing returns to investors. To illustrate, we

consider a portfolio manager who allocates her funds into N risky assets based on a long-short

trading strategy. At the beginning of month t, she sets the portfolio weight for stock i to

ωi,t = 1 (−1) if the stock is in the long-leg (short-leg) of the strategy. To assess the risk of

her portfolio ex-ante, she relies on the forecasts for the monthly covariance matrix based on

the predicted correlations and volatilities.

Specifically, relying on the decomposition in (2), we predict the covariance matrix for

month t based on:

R̂Cov
θ

t =
√

R̂V t · R̂C
θ

t ·
√

R̂V t, (13)

where R̂V t denotes the diagonal matrix of predicted realized variances, and R̂C
θ

t denotes

the predicted correlation matrix from model θ. To focus on the correlation forecasts, we

purposely use the popular HAR-based forecasting model to predict the monthly realized

volatilities regardless of the choice of correlation forecasting models. More sophisticated

volatility forecasting models, including machine learning-based procedures (e.g., Li and Tang,

2022), have obviously been proposed in the literature. However, as previously noted, the

simple HAR model has proven quite effective, and it has emerged as the benchmark model
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in the realized volatility forecasting literature. Accordingly, we purposely do not seek to

optimize the model for R̂V t, instead focusing on the comparison of different correlation

forecasts R̂C
θ

t , where we again restrict our main discussion to θ = HAR or LASSO.

Utilizing R̂Cov
θ

t , the expected risk of the portfolio ωt under model θ is simply given by

ω′
tR̂Cov

θ

t ωt. After the realization of the portfolio’s return in month t, the portfolio manager

can observe the ex-post portfolio risk and compare it with her expectation, in the form of

the risk-targeting ratio: ω′
tR̂Cov

θ

t ωt/ω′
tRCovtωt. Averaging these risk-targeting ratios across

different testing samples, we obtain the summary measure:

AvgRatioθ = 1
T

T∑
t=1

ω′
tR̂Cov

θ

t ωt

ω′
tRCovtωt

. (14)

Since the portfolio weights are pre-determined and the volatility forecasts are generated from

the same RV forecasting model, the more accurate the correlation forecasts, the closer this

average risk targeting ratio should be to unity.

We proceed to compare the AvgRatioθ ratios defined in (14) based on the HAR and

LASSO correlation forecasting models by considering 15 different strategies formed by the

anomalies previously used in our feature construction in Section 2.3.2. As the results in

Figure 5 clearly show, the risk-targeting ratios for the LASSO-based forecasts are generally

much closer to unity than the ones for the HAR-based forecasts.19 Specifically, while the

overall mean of the average risk-targeting ratios across all of the strategies equals 1.02 for

LASSO, it equals 0.83 for HAR, indicative of systematic underestimation of the true risks.

Further along these lines, the target of unity is included in the bootstrapped 95% confidence

intervals for six strategies for LASSO, whereas for only one strategy is unity included in the

95% confidence intervals for the HAR-based forecasts.20 These differences thus yet again
19We also evaluate the risk-targeting performance based on 15 additional anomalies pertaining to various

aspects of firms’ operation and market performance, as further detailed in Table A.2. The ratios for these
additional strategies, displayed in Figure A.2 in the Appendix, exhibit very similar patterns.

20For each strategy, we have 155-month observations of the risk-targeting ratio. We perform 1,000 iterations
of the bootstrap, where for each iteration we draw 155 ratios from the original data with replacement. For each
bootstrapped sample, we then compute the average risk-target ratio, using the 2.5th and 97.5th percentiles of
the resulting 1,000 average risk-targeted ratios as our bootstrapped confidence interval.
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underscore the superiority of the LASSO-based forecasts in the context of portfolio risk

evaluation and targeting.

5.4. Global minimum variance portfolio

In our final application, we consider estimates of the Global Minimum Variance (GMV)

portfolio. The GMV is often used for evaluating covariance matrix forecasts, as the portfolio

weights only depend on the covariance matrix and not on the expected return, thus allowing

for a “clean” comparison.21

Specifically, consider a risk-averse investor who allocates her wealth into N stocks with

the goal of minimizing the total risk of her portfolio based on the covariance matrix forecast

R̂Cov
θ

t from some forecasting model θ. By standard arguments, her optimal portfolio weight

vector may readily be constructed as:

ωθ
t = (R̂Cov

θ

t )−1

1′(R̂Cov
θ

t )−11
, (15)

where 1 denotes an N × 1 vector of ones.22 Calculating these optimal weights for each month

t in the testing samples, we construct the resulting monthly portfolio returns ωθ
t

′
rt, realized

portfolio risks
√

ωθ
t

′
RCovtωθ

t , and portfolio Sharpe ratios (ωθ
t

′
rt − rf,t)/

√
ωθ

t
′
RCovtωθ

t . To

keep the presentation manageable, we again focus on the HAR and LASSO-based correlation

forecasting models, together with the traditional HAR model for forecasting the volatilities,

in line with the analysis in the previous Section 5.3.

To further assess the economic gains, we follow the framework of Fleming et al. (2003), as

more recently extended by Bollerslev et al. (2018b), and assume that the investor’s realized
21Interestingly, Jagannathan and Ma (2003) also find that GMV portfolios often achieve higher

out-of-sample Sharpe ratios than mean-variance optimized tangent portfolios.
22This optimal solution requires that the covariance matrix estimate is positive definite. For the

LASSO-based correlation matrix forecasts that are non-positive definite, we apply a simple convexity
correction as detailed in the Appendix.

28



utility for the month-t return provided by model θ may be expressed as:

U(rθ
t , γ) = (1 + rθ

t ) − γ

2(1 + γ)(1 + rθ
t )2, (16)

where γ refers to her level of risk aversion. Accordingly, the economic value of switching from

forecasting model θ1 to model θ2 may naturally be measured by solving for ∆γ in:

T∑
t=1

U(rθ1
t , γ) =

T∑
t=1

U(rθ2
t − ∆γ, γ), (17)

with ∆γ interpretable as the return the investor would be willing to give up for using the

better correlation forecasting model.

The summary table included in Figure 6 presents the resulting average realized portfolio

returns, standard deviations, and Sharpe ratios, together with the estimates of ∆γ.23 Even

though the return on the portfolio never enters the optimization problem, the average realized

monthly return for the LASSO-based portfolios turns out to be slightly higher than for the

HAR portfolios. This, of course, is merely by “luck.” Importantly, however, LASSO-based

portfolios also result in lower average risk than HAR portfolios, with an average portfolio

standard deviation of 34.49% versus 36.42%. To more directly illustrate this, Figure 6 provides

a scatter plot of the monthly portfolio standard deviations (annualized) for the HAR and

LASSO-based GMV portfolios. As the figure shows, most of the data points are above the

45-degree line, indicating that the LASSO-based GMV portfolios typically result in lower

realized risks than the HAR-based GMV portfolios.24 The lower risk for the LASSO-based

portfolios, together with the slightly higher average returns, naturally result in a higher

average Sharpe ratio of 0.48, compared to 0.36 for the HAR-based portfolios. This also

translates into nontrivial economic gains. In particular, from the last three columns in the
23It is worth noting that even though we do not impose any constraint on the weights (as done in, e.g.,

Chan et al., 1999), neither of the two models generates especially extreme weights, as evidenced by the
minimum portfolio weights for both the HAR and LASSO-based predictions never falling below -10%, and the
maximum portfolio weights being around 30% for both models across all stocks and months in the sample.

24Concretely, the standard deviations of the HAR-based GMV portfolios exceed those of the LASSO-based
GMV portfolios for 77.42% of the months in the sample.
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table, an investor with risk aversion γ = 2 would be willing to give up 0.77% return per

annum for access to our LASSO-based forecasts versus relying on the HAR-based forecasts.

This economic gain further increases to 0.98% (1.37%) for a more risk-averse investor with

γ = 5 (γ = 10).

Motivated by a prototypical market-neutral strategy in which managers want to neutralize

market risk, we also consider a beta-neutral GMV analysis following Cosemans et al. (2016).

In this setup, we augment the traditional GMV optimization problem with the additional

constraint that the portfolio’s beta equals zero. That is:

ω′
tR̂Cov

θ

t mt

m′
tR̂Cov

θ

t mt

= 0, (18)

where mt denotes the N × 1 vector of firm market capitalization normalized to sum to

unity. The returns, risks, and Sharpe ratios of the resulting beta-neutral GMV portfolios,

reported in the table included in Figure 7, mirror the patterns for the original GMV portfolios.

In particular, the LASSO-based portfolios again attain the lowest average risk and highest

average Sharpe ratio. Importantly, the average of the actually realized monthly betas from the

LASSO-based predictions, calculated as ω′
tRCovtmt/m′

tRCovtmt, equals 0.05 with a robust

t-statistic of 1.58, suggesting that the portfolios are indeed market neutral. By contrast, the

average realized beta for the HAR-based predictions equals -0.20 with a robust t-statistic

of -7.19, indicating significant negative exposure to market risk. To further illustrate these

differences, Figure 7 displays time series plots of the monthly realized betas. As the figure

shows, the realized betas for LASSO are seemingly symmetric around zero, while the betas

for HAR appear systematically below zero. Interestingly, the imposition of the beta-neutral

constraint also substantially increases the utility gains to 1.81% (6.07%) per annum for an

investor with risk aversion γ = 2 (γ = 10). In other words, not only do the LASSO-based

correlation forecasts allow a portfolio manager to better attain her risk target, the forecasts

also allow her to better control her exposure to market risk.
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6. Robustness

6.1. Subsample analysis

The empirical analyses discussed above relied on the full testing sample for comparing and

contrasting the forecasting models. To illustrate that the superior performance remains

intact across different sub-samples, we divide the full testing sample into three subperiods:

2008-2011, 2012-2015, and 2016-2020.

The resulting out-of-sample performance for each of the three periods is summarized in

Table 5. Looking first at Panel A and the equal-weighted R2
OOS’s, we see that during the first

subperiod between 2008 and 2011, which covers the financial crisis and its aftermath, LASSO

again achieves the highest relative R2
OOS of 7.87%, while the OLS-based model with all the

25 main features included has the second highest relative R2
OOS of 6.95%. Put differently, the

sparsity engendered by LASSO improves the accuracy of the out-of-sample predictions when

the market is volatile by focusing on the predictors that matter the most. For the second

subperiod between 2012 and 2015, LASSO remains the best model with a relative R2
OOS of

10.70%. For the most recent period spanning 2016 to 2020, although the R2
OOS for LASSO is

slightly below the OLS-based model that involves all the features, it clearly outperforms the

HAR-based forecasts with an impressive relative R2
OOS of 11.51%. The value-weighted relative

R2
OOS’s reported in Panel B evidence very similar patterns. The LASSO-based forecasts

generally dominate the OLS-based forecasts, except for the very last subperiod, where it

performs on par with the most general OLS-based model.

In light of the larger relative gains seemingly observed for the LASSO-based predictions

during more volatile earlier time periods, we also perform a more detailed analysis pertaining

to the recent Covid period. Although the data for the Covid period never enter our training

and validation samples, LASSO is purposely designed to avoid overfitting the “noise” thereby

hopefully attaining more robust predictions during that period as well. To corroborate this

conjecture, Figure 8 presents a scatter plot of the average realized and predicted correlations
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for each of the stocks in our sample during the peak six-month Covid period from March

2020, when the World Health Organization declared COVID-19 a pandemic, through August

2020 a half-year later. The reported average correlations for each of the stocks are simply

calculated as the mean of all the pairwise correlations that contained a particular stock. As

the figure shows, most of the LASSO-based correlation predictions are indeed closer to the

45-degree line than the HAR-based predictions, reaffirming that consistent with our previous

out-of-sample evaluations LASSO typically produces the most accurate forecasts over this

challenging time period as well.

6.2. Alternative features and machine learning techniques

The 25 features underlying our main results all involve various realized correlation-type

measures. As discussed above, our use of these measures as our main features is naturally

motivated by earlier findings in the financial econometrics literature. Meanwhile, a number of

different economically motivated measures have also previously been proposed in the finance

literature for capturing firm connections. Concretely, we consider the distance between two

firms’ headquarters as measured by their Zipcode distance (Parsons et al., 2020), economic

activity as measured by text-based network industry classifications (Hoberg and Phillips,

2010, 2016), industry supply chain dependence (Menzly and Ozbas, 2010), common analyst

coverage (Israelsen, 2016), common active mutual fund ownership (Antón and Polk, 2014),

and common passive mutual fund ownership (Appel et al., 2016).25 Table A.3 in the Appendix

provides more detailed definitions and data sources.

To investigate whether any of these six additional economically-motivated firm-linkage

variables may be used to further improve the out-of-sample correlation forecasts, we begin

by succinctly summarizing the information in each by a series of simple dummies using the

medians as cutoffs, the only exception being the dummy for text-based industry classification
25A number of other firm linkage measures have also been explored in the literature, such as stocks with

similar value-growth labeling (Boyer, 2011) and firms with similar retail concentration (Kumar and Lee,
2006).
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(TNIC3 ) which already takes a value of one if two firms are classified into the same industry

and zero otherwise. Armed with these dummies, we then consider two new augmented feature

sets, the first set consisting of our original 25 features plus the 6 dummies, and the second set

consisting of the 25 main features plus the 150 additional features obtained by interacting

each of the original features with the six new dummies. As such, this allows us to examine

both first-order direct and second-order interactive effects.

In addition to these alternative feature sets, we also consider the use of alternative

machine learning algorithms for the construction of the prediction models. In particular,

while our main results suggest that LASSO is effective in reducing the number of parameters

in the forecasting models through the use of an L1-norm penalty, it assumes a linear relation

between the forecasts and the features. It is possible that this is too restrictive and that

other constraints and/or nonlinear relations may result in even better forecasts. Hence, to

investigate this we implement the following four additional machine learning algorithms:

Ridge Regression (Ridge), Elastic Net (ENet), Principal Component Regression (PCR), and

Feed-forward Neural Networks (FNN). The first three of these allow us to explore different

regions of the parameter space in linear models, while the last allows us to more thoroughly

explore possible nonlinear relations and interactions.26

Table 6 reports the R2
OOS relative to the simple HAR forecasts obtained by different

combinations of the feature sets and machine learning algorithms. We purposely maintain the

same feature standardization and training scheme underlying the results reported in Table 2

to allow for a direct comparison with the earlier results.27 In line with the earlier results, the

equal and value-weighted R2
OOS’s reported in Panels A and B, respectively, are fairly similar,

suggesting that our findings are not dominated by many small firms and/or a few large firms.
26For the Principal Component Regressions, to help increase the computational speed and prevent

overfitting, we restrict the number of components used in the regressions to be no more than 20. For the
Neural Network, we report the results based on a two-hidden-layer feed-forward network with 4 and 2 neurons.
However, in unreported results, we also considered a three-hidden-layer network with 8, 4, and 2 neurons,
and a four-hidden-layer network with 16, 8, 4, and 2 neurons.

27The inclusion of manually selected interacted terms in the largest feature set further facilitates a fair
comparison among the linear models (i.e., LASSO, Ridge, ENet, and PCR) and the non-linear models (i.e.,
FNN), and helps pin down the contribution of the interactive effects.
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Looking across the rows, for the LASSO, Ridge, and ENet-based predictions, we observe only

minor increases in the R2
OOS’s by adding the new firm-linkage dummies, whether directly or

interactively. As a case in point, for the LASSO-based predictions, the equal-weighted relative

R2
OOS increases from 10.16% for the model based on our original 25 features, to just 10.24%

and 10.35% for the models based on the new augment feature sets, indirectly suggesting that

the relevant information about firm linkages for correlation prediction are already embedded

in the time-series based realized features. Further corroborating this conjecture, for both

the PCR and FNN-based predictions, the inclusion of the additional firm-linkage measures

actually results in lower R2
OOS’s compared to the prediction models based on our original 25

features only.

Looking across the columns, as expected the performance of ENet is roughly comparable

to that of LASSO, while the performance of Ridge appears slightly inferior. In contrast to

LASSO, which is based on the sparsity-encouraging L1-penalty, Ridge relies on an L2-penalty,

and thus never enjoys the benefits of true dimension reduction. By comparison, PCR does

benefit from dimension reduction, as long as the specific feature set can be well-represented

by the selected principal components. However, when this is not the case, PCR tends

to underperform LASSO, as evidenced by the R2
OOS’s for the third and largest feature

set. Interestingly, the more complicated-to-implement FNN-based models also typically

underperform LASSO.

In sum, the results in Table 6 further underscore the superior performance of our

simple-to-construct LASSO-based correlation forecasting models, both in terms of the use of

alternative firm-linkage measures and more complex machine learning algorithms.

7. Conclusion

Exploiting techniques and ideas from the recent machine learning literature, we design new

features and models explicitly geared toward correlation forecasting. Implementing the

new models with a large panel of S&P 500 stocks, we document statistically significant
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improvements in out-of-sample forecast accuracy, along with nontrivial economic gains from

applying the new models in a wide range of practical applications. We further attribute

the success of our preferred LASSO-based models to their ability to adapt to changing

market conditions by allowing the many different features to dynamically enter and exit the

predictions. It is, of course, possible that even better forecasting models could be constructed

by the use of more complicated fitting algorithms, such as, e.g., tree models, together with

additional economically motivated enlarged feature sets. By comparison, our current focus

on linear models and algorithms is explicitly designed to allow for greater transparency and

easier interpretability of the results. The same ideas and techniques developed here could

also be used in the construction of forecasting models for other commonly used risk measures,

including measures of precision and factor risk exposures.

Another promising avenue for future research would entail the use of realized correlation

forecasts to study the correlation risk premium. Driessen, Maenhout, and Vilkov (2009)

compares the variance risk premium (VRP) of a broadly defined market index and its

constituents, and concludes that the significant VRP for the market is primarily driven by

correlation risk since the VRPs for most individual stocks are not significantly different from

zero. Other studies rely on correlation innovation (Krishnan, Petkova, and Ritchken, 2009),

or the difference between option-implied and realized correlations (Driessen, Maenhout, and

Vilkov, 2013; Mueller, Stathopoulos, and Vedolin, 2017; Bondarenko and Bernard, 2021)

to further elucidate the origins of the correlation risk premium. Our new framework for

more accurate realized correlation forecasting holds the promise of additional insights by

explicating the economic drivers behind changes in correlation risks. Other potentially

interesting applications include the use of our correlation forecasts to predict factor betas

(Buss and Vilkov, 2012), and better evaluate hedge funds’ ability to maintain market neutrality

and assess their timing ability (Buraschi, Kosowski, and Trojani, 2014), to name but a few.

We leave further work along all of these lines for future research.

35



Fig. 1 Monthly realized correlations and variances
The figure plots the 12-month moving average of the cross-sectional means of the monthly realized correlations
and realized variances for the S&P 500 stocks in our sample.
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Fig. 2 Monthly realized correlations
The figure displays the histogram of monthly realized correlations for the S&P 500 stocks in our sample.
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Fig. 3 Contribution of selected features
The figure displays the scaled absolute coefficients on the 25 main realized features used in the LASSO model. The columns

denote each year in the testing sample, and the rows display the 25 features. The color gradients within each column indicate

the most influential (dark blue) to the least influential (light blue) features, with white indicating features that are not selected.
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Panel A: Equal-weighted Panel B: Value-weighted

Fig. 4 Cumulative values for pairs trading strategies
The figure displays the cumulative gains of the pairs trading strategies based on the RetDiff signals for different stock

samples from February 2008 to December 2020. The samples for the pairs trading strategy include the full S&P 500 universe

(Unconditional), the conditional sample based on the correlation predictions from the HAR model (HAR), and the conditional

sample based on the correlation predictions from the LASSO-based model (LASSO). The RetDiff signal is the return divergence

between stocks and their pair portfolios, as defined in equation (10) in the main text.
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Fig. 5 Risk-targeting ratios of long-short strategies
The figure displays the ratios of the forecasted portfolio risk over the realized portfolio risk from the HAR and LASSO-based

models for the 15 main long-short trading strategies discussed in the main text. The ratios are averaged over all testing samples

according to equation (14). The black lines correspond to 95% bootstrapped confidence intervals.
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Fig. 6 GMV portfolio comparisons
The figure compares the performance of GMV portfolios for the HAR and LASSO-based forecasting models. The top panel

reports the full sample average returns, standard deviations, and Sharpe ratios for the GMV portfolios, together with the utility

gains (in annualized returns) of switching from HAR- to LASSO-based forecasts. The scatter plot displays the (annualized)

monthly standard deviations from the two different models.
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Fig. 7 Beta-neutral GMV portfolio comparisons
The figure compares the performance of beta-neutral GMV portfolios for the HAR and LASSO-based forecasting models. The

top panel reports the full sample average returns, standard deviations, Sharpe ratios, and realized betas for the portfolios,

together with the utility gains (in annualized returns) of switching from the HAR to the LASSO-based forecasts. The time-series

plot displays the monthly realized betas for the beta-neutral GMV portfolios from the two different forecasting models.
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Fig. 8 Out-of-sample predictions during the peak of Covid
The figure shows for each stock in our sample the average realized correlations (y-axis) against the average predicted correlations

(x-axis) from the HAR model and the LASSO-based model between March 2020 and August 2020. The average correlation for a

stock is calculated as the mean of all the pairwise correlations that contain the stock.
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Table 1 Descriptive statistics for realized correlation features
The table reports the descriptive statistics of all realized correlation features. The sample consists of 417 stocks listed on

NYSE/AMEX/NASDAQ that have ever been included in the S&P 500 index and have full historical quotations over the period

from January 2000 to December 2020 with share code 10 or 11, price between $1 and $1000, and daily number of trades greater

than or equal to 100. Superscripts d, w, m, and q are abbreviations of daily, weekly, monthly, and quarterly construction

intervals or center-of-mass. RCh and RCh− (h = d, w, m) denote the daily, weekly, and monthly realized correlation and

negative semicorrelation, respectively. F RCh (h = d, w, m) is the daily, weekly, and monthly factor-driven realized correlation.

ExpRCh and ExpRCh− (h = d, w, m, q) are the exponential realized correlation and negative semicorrelation calculated from

exponentially weighted moving average of past 500-day realized covariances and negative semicovariances using the corresponding

center-of-mass h. ExpScRCh and ExpScRCh− (h = d, w, m, q) are the sector-specific exponential realized correlations and

semicorrelations with center-of-mass h.

Variable Mean Std Skewness Kurtosis Min P1 P25 Median P75 P99 Max AR(1) AR(5) AR(21) AR(63)

RCd 0.26 0.30 -0.33 -0.21 -0.98 -0.49 0.06 0.28 0.48 0.85 1.00 0.09 0.03 0.03 -0.04
RCw 0.25 0.21 0.06 0.02 -0.93 -0.22 0.11 0.25 0.39 0.74 1.00 0.20 0.09 0.10 -0.05
RCm 0.24 0.16 0.36 0.25 -0.89 -0.10 0.13 0.23 0.34 0.66 0.98 0.40 0.18 0.11 -0.04
RCd− 0.46 0.22 0.07 -0.83 0.00 0.04 0.29 0.46 0.63 0.91 1.00 0.08 0.03 0.02 -0.03
RCw− 0.44 0.16 0.21 -0.32 0.00 0.11 0.32 0.43 0.55 0.81 1.00 0.16 0.07 0.08 -0.03
RCm− 0.41 0.13 0.31 0.07 0.01 0.14 0.33 0.41 0.50 0.74 0.98 0.28 0.14 0.11 -0.03
FRCd 0.24 0.22 0.91 1.76 -1.00 -0.14 0.09 0.20 0.35 0.98 1.00 0.32 0.17 0.09 -0.08
FRCw 0.22 0.17 0.97 1.51 -1.00 -0.07 0.10 0.19 0.31 0.75 1.00 0.46 0.26 0.14 -0.10
FRCm 0.21 0.15 0.94 1.53 -1.00 -0.05 0.10 0.18 0.29 0.66 1.00 0.60 0.33 0.14 -0.09
ExpRCd 0.25 0.22 -0.03 0.04 -0.95 -0.26 0.10 0.25 0.40 0.75 0.99 0.17 0.07 0.08 -0.05
ExpRCw 0.24 0.17 0.34 0.31 -0.88 -0.11 0.12 0.23 0.34 0.67 0.97 0.40 0.15 0.13 -0.05
ExpRCm 0.24 0.14 0.52 0.43 -0.69 -0.03 0.14 0.22 0.32 0.61 0.93 0.79 0.35 0.12 -0.15
ExpRCq 0.24 0.12 0.54 0.37 -0.46 0.00 0.16 0.23 0.32 0.58 0.93 0.93 0.64 0.17 -0.30
ExpRCd− 0.44 0.17 0.21 -0.41 0.00 0.11 0.32 0.43 0.55 0.83 0.99 0.14 0.07 0.07 -0.03
ExpRCw− 0.41 0.13 0.32 0.08 0.01 0.13 0.32 0.41 0.50 0.75 0.98 0.33 0.13 0.12 -0.04
ExpRCm− 0.40 0.11 0.38 0.25 0.03 0.17 0.32 0.39 0.47 0.70 0.96 0.75 0.30 0.11 -0.12
ExpRCq− 0.40 0.10 0.42 0.22 0.04 0.19 0.33 0.39 0.46 0.66 0.95 0.91 0.61 0.16 -0.25
ExpScRCd 0.04 0.12 2.98 8.30 0.00 0.00 0.00 0.00 0.00 0.54 0.82 0.40 0.18 0.21 -0.10
ExpScRCw 0.04 0.11 2.98 8.31 0.00 0.00 0.00 0.00 0.00 0.51 0.80 0.56 0.26 0.22 -0.09
ExpScRCm 0.04 0.11 2.90 7.71 0.00 0.00 0.00 0.00 0.00 0.49 0.75 0.86 0.46 0.17 -0.22
ExpScRCq 0.04 0.11 2.83 7.10 0.00 0.00 0.00 0.00 0.00 0.49 0.69 0.96 0.73 0.24 -0.38
ExpScRCd− 0.06 0.17 2.48 4.55 0.00 0.00 0.00 0.00 0.00 0.64 0.90 0.40 0.20 0.19 -0.10
ExpScRCw− 0.06 0.16 2.48 4.60 0.00 0.00 0.00 0.00 0.00 0.61 0.85 0.53 0.25 0.25 -0.09
ExpScRCm− 0.06 0.15 2.48 4.58 0.00 0.00 0.00 0.00 0.00 0.59 0.79 0.85 0.46 0.20 -0.22
ExpScRCq− 0.06 0.15 2.47 4.51 0.00 0.00 0.00 0.00 0.00 0.57 0.75 0.96 0.74 0.28 -0.38
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Table 2 Out-of-sample predictions
The table reports the out-of-sample performance for OLS-based correlation forecasting models and LASSO-based correlation

forecasting model. The sample consists of 417 stocks listed on NYSE/AMEX/NASDAQ that have ever been included in the

S&P 500 index and have full historical quotations over the period from January 2000 to December 2020 with share code 10

or 11, price between $1 and $1,000, and daily number of trades greater than or equal to 100. Superscripts d, w, m, and q are

abbreviations of daily, weekly, monthly, and quarterly construction intervals. RCh and RCh− (h = d, w, m) denote the daily,

weekly, and monthly realized correlation and negative realized correlation, respectively. F RCh (h = d, w, m) is the daily, weekly,

and monthly factor-driven realized correlation. ExpRCh and ExpRCh− (h = d, w, m, q) are the exponential realized correlation

and negative semicorrelation calculated from exponentially weighted moving average of past 500-day realized covariances and

negative semicovariances using the corresponding center-of-mass h. ExpScRCh and ExpScRCh− (h = d, w, m, q) are the

sector-specific exponential realized correlations and semicorrelations with center-of-mass h. Our correlation forecasting models

include three OLS-based models: SHAR, SHAR-F, and SHAR-F-Exp, and the LASSO model. Panel A reports R2,EW
OOS and

R2,V W
OOS relative to HAR for each model using the entire panel of stock pairs according to equations (7) and (8). Panel B and C

report the modified DM t-statistics and value-weighted DM t-statistics for pairwise comparisons among models, respectively.

Panel A: R2
OOS relative to HAR

Model Feature Set Equal-weighted Value-weighted

(1) SHAR 3 RCh + 3 RCh− 0.22% 0.11%
(# of features = 6)

3 RCh + 3 RCh−

(2) SHAR-F + 3 FRCh 1.71% 1.30%
(# of features = 9)

3 RCh + 3 RCh−

+ 3 FRCh

(3) SHAR-F-Exp + 4 ExpRCh + 4 ExpRCh− 9.82% 7.31%
+ 4 ExpScRCh + 4 ExpScRCh−

(# of features = 25)

(4) LASSO All 25 main features 10.16% 8.05%

Panel B: DM t-statistics (equal-weighted)

Model HAR (1) (2) (3)

(1) SHAR 11.55
(2) SHAR-F 29.32 27.58
(3) SHAR-F-Exp 39.08 39.84 35.24
(4) LASSO 47.70 48.93 43.43 6.31

Panel C: DM t-statistics (value-weighted)

Model HAR (1) (2) (3)

(1) SHAR 4.99
(2) SHAR-F 13.56 13.41
(3) SHAR-F-Exp 16.21 16.29 15.51
(4) LASSO 17.85 17.91 17.41 8.99
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Table 3 Performance of pairs trading strategies
The table reports the performance of the pairs trading strategy based on RetDiff signals using different stock samples. The

full evaluation period is from February 2008 to December 2020. The samples for pairs trading strategy are S&P 500 universe

(unconditional sample) and reduced samples based on HAR and LASSO correlation predictions. RetDiff signal is the return

divergence between stocks and their pair portfolios defined in equation (10). Panels A and B report the annualized equal-weighted

and value-weighted monthly returns of the quintile portfolios sorted by RetDiff with different samples. By the end of each

month t, we sort stocks on RetDiff into five quintile portfolios. We then compute the difference between predicted and historical

correlations of a stock’s pair portfolio, ∆Corrθ, based on HAR and LASSO correlation predictions. Lastly we calculate realized

monthly returns in month t + 1 for RetDiff -sorted portfolios with the unconditional sample and restricted samples of stocks in

quintile 5 sorted by ∆Corrθ. The column labeled “HML” reports the difference in returns between Portfolio 5 and Portfolio

1, with t-statistics in parentheses. Panel C reports the estimated regression coefficients and t-statistics (in-parentheses) from

Fama-MacBeth cross-sectional regressions predicting one-month ahead stock returns using RetDiff defined as discrete values of

[1, 2, 3, 4, 5] according to sorted quintiles each month. The control variables include Beta, Size, BM, and Mom.

Panel A: Equal-weighted portfolio sorted by return divergence

1 (Low) 2 3 4 5 (High) HML

Unconditional 6.92% 5.75% 7.09% 6.45% 8.07% 1.15% (0.47)
HAR 9.53% 6.44% 9.25% 7.90% 13.16% 3.63% (0.88)
LASSO 3.50% 5.12% 6.08% 5.67% 12.84% 9.34% (2.30)

Panel B: Value-weighted portfolio sorted by return divergence

1 (Low) 2 3 4 5 (High) HML

Unconditional 6.05% 4.58% 6.05% 4.76% 4.86% -1.20% (-0.45)
HAR 6.42% 6.63% 9.02% 7.90% 12.56% 6.14% (1.60)
LASSO 1.90% 5.68% 6.63% 6.28% 10.75% 8.85% (2.20)

Panel C: Fama-MacBeth regressions

Unconditional HAR LASSO

(1) (2) (3) (4) (5) (6)
Intercept 0.50 4.42 0.55 5.79 0.13 6.52

(1.28) (3.78) (1.18) (2.91) (0.31) (3.60)
RetDiff 0.03 0.04 0.08 0.12 0.14 0.16

(0.54) (0.97) (1.02) (1.80) (1.87) (2.33)
Controls No Yes No Yes No Yes

Adj-R2 0.59% 12.01% 0.92% 11.73% 1.06% 12.82%
N 64,635 64,635 13,020 13,020 13,020 13,020
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Table 4 Equity premium predictions
The table reports the OLS predictive regression results using different average correlation measures (AvgCorrθ) to forecast

future market excess returns. AvgCorrθ is calculated according to equation (12) based on a naive model using the lagged

correlation as predictors (denoted RC in the table), the HAR model, and the LASSO-based model. The dependent variable is

the monthly excess return of the CRSP value-weighted index. The sample spans from February 2008 to December 2020. The

control variables include the dividend-price ratio (dp), earnings-price ratio (ep), book-to-market ratio (bm), net equity expansion

(ntis), treasury-bill rate (tbl), term spread (tms), default spread (dfy), and stock market variance (svar), and t-statistics are

reported in parentheses.

Panel A: AvgCorrEW Panel B: AvgCorrV W

(1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6)

Intercept 0.00 -0.02 -0.02 0.54 0.49 0.53 0.00 -0.02 -0.03 0.55 0.50 0.56
(0.05) (-0.94) (-1.41) (1.53) (1.33) (1.52) (0.18) (-0.86) (-1.49) (1.54) (1.37) (1.63)

AvgCorr
RC 0.03 0.03 0.03 0.02

(0.88) (0.52) (0.75) (0.37)
HAR 0.11 0.08 0.10 0.06

(1.47) (0.73) (1.39) (0.61)
LASSO 0.13 0.24 0.13 0.25

(2.00) (2.40) (2.08) (2.66)
dp 0.12 0.11 0.13 0.12 0.11 0.14

(1.65) (1.49) (1.77) (1.66) (1.52) (1.90)
ep -0.00 -0.00 -0.01 -0.00 -0.00 -0.00

(-0.17) (-0.27) (-0.31) (-0.14) (-0.23) (-0.21)
bm -0.12 -0.13 -0.15 -0.12 -0.13 -0.13

(-0.83) (-0.88) (-0.99) (-0.82) (-0.85) (-0.93)
ntis 0.22 0.20 0.11 0.23 0.22 0.10

(0.65) (0.62) (0.33) (0.69) (0.66) (0.31)
tbl -0.99 -0.91 -0.63 -0.99 -0.93 -0.67

(-1.36) (-1.25) (-0.87) (-1.36) (-1.27) (-0.92)
tms 0.11 0.10 0.09 0.12 0.11 0.09

(0.87) (0.83) (0.73) (0.92) (0.87) (0.73)
dfy -2.99 -2.91 -4.84 -2.89 -2.83 -5.03

(-1.74) (-1.74) (-2.62) (-1.70) (-1.70) (-2.74)
svar -0.18 -0.15 -0.23 -0.17 -0.17 -0.41

(-0.31) (-0.27) (-0.41) (-0.29) (-0.30) (-0.73)

Adj-R2 -0.15% 0.74% 1.91% 1.76% 1.94% 5.33% -0.29% 0.60% 2.12% 1.67% 1.82% 6.16%
N 155 155 155 155 155 155 155 155 155 155 155 155
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Table 5 Out-of-sample predictions for different subsamples
The table reports the out-of-sample performance for OLS and LASSO-based correlation forecasting models for the three

subsample periods: 2008-2011, 2012-2015, and 2016-2020. The sample consists of 417 stocks listed on NYSE/AMEX/NASDAQ

that have ever been included in the S&P 500 index and have full historical quotations over the period from January 2000 to

December 2020 with share code 10 or 11, price between $1 and $1,000, and daily number of trades greater than or equal to 100.

Superscripts d, w, m, and q are abbreviations of daily, weekly, monthly, and quarterly construction intervals. RCh and RCh−

(h = d, w, m) denote the daily, weekly, and monthly realized correlation and negative realized correlation, respectively. F RCh

(h = d, w, m) is the daily, weekly, and monthly factor-driven realized correlation. ExpRCh and ExpRCh− (h = d, w, m, q)

are the exponential realized correlation and negative semicorrelation calculated from exponentially weighted moving average

of past 500-day realized covariances and negative semicovariances using the corresponding center-of-mass h. ExpScRCh and

ExpScRCh− (h = d, w, m, q) are the sector-specific exponential realized correlations and semicorrelations with center-of-mass h.

Our correlation forecasting models include three OLS-based models: SHAR, SHAR-F, and SHAR-F-Exp, and the LASSO model.

Panels A and B report R2,EW
OOS and R2,V W

OOS relative to the HAR model, respectively.

Model Feature set R2
OOS relative to HAR

Panel A: Equal-weighted

2008-2011 2012-2015 2016-2020

(1) SHAR 3 RCh + 3 RCh− 0.12% 0.33% 0.23%
(# of features = 6)

3 RCh + 3 RCh−

(2) SHAR-F + 3 FRCh 2.34% 0.64% 1.97%
(# of features = 9)

3 RCh + 3 RCh−

+ 3 FRCh

(3) SHAR-F-Exp + 4 ExpRCh + 4 ExpRCh− 6.95% 9.95% 11.89%
+ 4 ExpScRCh + 4 ExpScRCh−

(# of features = 25)

(4) LASSO All 25 main features 7.87% 10.70% 11.51%

Panel B: Value-weighted

2008-2011 2012-2015 2016-2020

(1) SHAR 3 RCh + 3 RCh− 0.08% 0.25% 0.05%
(# of features = 6)

3 RCh + 3 RCh−

(2) SHAR-F + 3 FRCh 2.24% 0.04% 1.44%
(# of features = 9)

3 RCh + 3 RCh−

+ 3 FRCh

(3) SHAR-F-Exp + 4 ExpRCh + 4 ExpRCh− 3.66% 9.40% 8.47%
+ 4 ExpScRCh + 4 ExpScRCh−

(# of features = 25)

(4) LASSO All 25 main features 5.76% 10.10% 8.31%
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Table 6 Out-of-sample predictions for alternative fitting procedures
The table reports the out-of-sample performance of different machine learning correlation forecasting models using alternative

feature sets. The sample consists of 417 stocks listed on NYSE/AMEX/NASDAQ that have ever been included in the S&P 500

index and have full historical quotations over the period from January 2000 to December 2020 with share code 10 or 11, price

between $1 and $1,000, and the daily number of trades greater than or equal to 100. The features include 25 predictors used

in the main analysis, six dummies based on firm-linkage variables, and 150 feature-dummy interactive terms. Our correlation

forecasting models include LASSO, Ridge Regression (Ridge), Elastic Net (ENet), Principal Component Regression (PCR), and

two-hidden-layer Feed-Forward Neural Network (FNN). Panels A and B report R2,EW
OOS and R2,V W

OOS relative to HAR, as defined

in equations (7) and (8), respectively, for each model using different sets of features.

Feature set R2
OOS relative to HAR

Panel A: Equal-weighted

LASSO Ridge ENet PCR FNN
All 25 main features 10.16% 9.83% 10.14% 10.44% 10.12%

All 25 main features
+ 6 dummies 10.24% 9.96% 10.19% 9.61% 9.97%
(# of features = 31)

All 25 main features
+ 150 feature × dummy combinations 10.35% 9.95% 10.31% 8.76% 9.88%
(# of features = 175)

Panel B: Value-weighted

LASSO Ridge ENet PCR FNN
All 25 main features 8.05% 7.31% 8.07% 8.31% 7.56%

All 25 main features
+ 6 dummies 8.05% 7.38% 8.09% 7.66% 6.98%
(# of features = 31)

All 25 main features
+ 150 feature × dummy combinations 8.20% 7.54% 8.24% 7.68% 7.02%
(# of features = 175)
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Appendix

Correlation signature plot

Following Andersen, Bollerslev, Diebold, and Labys (2000), Figure A.1 plots the sample mean

correlations averaged across time and stocks as a function of different sampling frequencies

ranging from 1-minute to 1-hour. As the figure shows, the averaged realized correlations

increase from the 1- to 10-minute sampling frequency, but appear to flatten out at around

the 15-minute frequency, underscoring the soundness of said sampling frequency used in the

construction of our monthly realized correlation measures.

Fig. A.1 Signature plots for monthly realized correlation
This figure shows the mean value of monthly realized correlation averaged across stocks and time for different
sampling frequencies.
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Anomaly characteristics

Table A.1 Descriptive statistics for anomaly characteristics
This table reports the mean, standard deviation, and quantiles of 15 representative anomaly characteristics including 11 mispricing

anomalies of Stambaugh et al. (2012) and Beta, Size, Book-to-market ratio, and Reversal. The sample consists of 417 stocks

listed on NYSE/AMEX/NASDAQ that have ever been included in the S&P 500 index and have full historical quotations over

the period from January 2000 to December 2020 with share code 10 or 11, price between 1 and 1000, and daily number of trades

greater than or equal to 100.

Variable Acronym Mean Std P1 P25 Median P75 P99

Accruals acc 0.00 0.04 -0.12 -0.01 0.00 0.02 0.11
Asset growth agr 0.10 0.25 -0.30 -0.01 0.05 0.13 1.29
Beta beta 1.04 0.51 0.12 0.67 0.97 1.31 2.63
Book-to-market bm 0.47 0.42 -0.09 0.22 0.37 0.62 1.82
Composite equity issues cei -0.08 0.23 -0.75 -0.10 -0.06 -0.03 0.36
Distress dis -6.50 5.41 -8.57 -7.42 -6.86 -6.01 0.50
Gross profitability gpf 0.30 0.23 -0.01 0.12 0.26 0.42 1.02
Investment-to-assets inta 0.06 3.70 -0.17 0.01 0.03 0.06 0.39
Momentum mom 0.13 0.37 -0.61 -0.06 0.11 0.28 1.31
Net operating assets noa 0.53 0.35 -0.20 0.36 0.54 0.67 1.53
Net stock issues nsi 0.13 0.93 -0.15 -0.03 0.00 0.01 3.09
O-score oscore -3.91 1.60 -7.64 -4.78 -3.95 -3.16 0.77
Return on assets roa 0.01 0.02 -0.07 0.00 0.01 0.03 0.08
Reversal rev 0.01 0.10 -0.25 -0.03 0.01 0.06 0.28
Size size 16.20 1.24 13.23 15.36 16.21 17.04 19.09
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Additional anomaly characteristics

Table A.2 Descriptive statistics for additional firm characteristics
This table reports the mean, standard deviation, and quantiles of 15 alternative firm characteristics. The firm characteristics

are another set of representative anomalies including Abnormal earnings announcement return (abr), Abnormal earnings

announcement volume (aeavol), Change in 6-month momentum (chmom), Change in shares outstanding (chcsho), Current

ratio (currat), Earnings to price (ep), Employee growth rate (hire), Expected growth (eg), Industry momentum (indmom),

Industry-adjusted change in profit margin (chpmia), Investment (invest), Liquidity (liq), Long-term reversals (lrv), Residual

variance (rvr), and Sales growth (sgr). The sample includes all 417 stocks listed on NYSE/AMEX/NASDAQ that have ever

been included in the S&P 500 index and have full historical quotations over the period from January 2000 to December 2020.

Variable Acronym Mean Std P1 P25 Median P75 P99

Abnormal earnings announcement return abr 0.00 0.02 -0.05 -0.01 0.00 0.01 0.05
Abnormal earnings announcement volume aeavol 0.87 0.96 -0.35 0.26 0.65 1.20 4.50
Change in 6-month momentum chmom 0.01 0.37 -0.86 -0.17 -0.01 0.17 1.08
Change in shares outstanding chcsho 0.04 0.22 -0.14 -0.02 0.00 0.01 1.05
Current ratio currat 2.57 4.65 0.50 1.09 1.53 2.34 24.58
Earnings to price ep 0.03 0.22 -0.56 0.03 0.05 0.07 0.17
Employee growth rate hire 0.04 0.17 -0.38 -0.02 0.02 0.08 0.72
Expected growth eg 0.00 0.02 -0.05 0.00 0.00 0.01 0.05
Industry momentum indmom 0.12 0.29 -0.48 -0.04 0.11 0.24 1.11
Industry-adjusted change in profit margin chpmia 0.52 7.43 -15.81 -0.17 0.00 0.12 37.83
Investment invest 1.00 0.45 0.30 0.85 0.98 1.13 1.99
Liquidity liq 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Long-term reversals lrv 0.33 0.72 -0.76 -0.03 0.24 0.54 2.71
Residual variance rvr 0.04 0.02 0.02 0.02 0.03 0.04 0.11
Sales growth sgr 0.08 0.22 -0.44 0.00 0.06 0.13 0.83
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Risk-targeting ratios for additional anomaly portfolios

Fig. A.2 Risk-targeting ratios of additional long-short strategies
This figure displays the average ratios of forecasted portfolio risk over realized portfolio risk under HAR and LASSO models

across 15 alternative long-short trading strategies defined in Table A.2. The average realized ratios are calculated over all testing

samples according to equation (14). 95% bootstrapped confidence intervals are included.
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Correcting non-positive definite matrices

The optimal solution of the GMV portfolio requires the input covariance matrices to be

positive definite, or equivalently the correlation matrices formed by the pairwise correlation

forecast must be positive definite. The simple HAR-based correlation matrix forecasts,

of course, are always positive-definite since they are convex combinations of lagged daily,

weekly, and monthly realized correlation matrices, each of which is positive-definite by

construction. However, some of the inputs for the LASSO-based correlation matrix forecasts

(e.g., the negative realized semicorrelation matrices) are not positive-definite, and the predicted

correlation matrices are therefore not guaranteed to be positive definite. This occurs for

about 10% of the forecasts in our sample. To address this issue, we apply a simple convexity

correction on any non-positive-definite correlation matrix prediction:

R̂LASSO∗
t = aR̂HAR

t + (1 − a)R̂LASSO
t ,

where the scalar a denotes the weight placed on the corresponding positive definite HAR-model

forecasts. We choose the minimum value of a > 0 such that the resulting R̂LASSO∗
t is positive

definite, based on a threshold of 0.1 for the smallest eigenvalue to obtain a stable inverse.28

Importantly, however, our GMV-related model comparison results reported in Figure 6 remain

robust to the exclusion of the months in the sample for which the unadjusted LASSO-based

forecasts are non-positive-definite, underscoring that the superior performance is not driven

by this convexity correction.

28Relatedly, Shi et al. (2020) propose shrinking the sample eigenvalues of the inverse covariance matrix
used in GMV construction. The recent study by Archakov and Hansen (2021) provides an alternative more
complicated parameterization of the correlation matrix based on a multivariate extension of the traditional
Fisher transform that automatically guarantees positive definiteness; see also Archakov et al. (2020).
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Traditional firm-linkage measures

Table A.3 Firm linkages
The table provides the definitions of the 6 additional firm-linkage variables investigated in Section 6.2, along with their data

sources.

Variable Definition Data source

ZipDist Zip code distance between two firms’ headquarters NBER ZIP Code Distance Database
Compustat

Text-based Network Industry Classifications based on firm
TNIC3 pairwise similarity scores from text analysis of firm 10-K product Hoberg and Phillips Data Library

descriptions

IndSuppDep Industry supply chain dependence measured by fraction of Bureau of Economic Analysis
industry-by-industry purchases from input-output tables

CmnAnalys Common analyst coverage as # of common analysts following the I/B/E/S
stock pair over # of total unique analysts

Common active mutual fund ownership defined as the total dollar
CmnActOwn value of a stock pair held by common active mutual funds over the CRSP Mutual Fund Database

total dollar value of shares outstanding for the stock pair

Common passive mutual fund ownership defined as the total dollar
CmnPssOwn value of a stock pair held by common passive mutual funds over the CRSP Mutual Fund Database

total dollar value of shares outstanding for the stock pair
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