HOW COMPETITIVE IS THE STOCK MARKET? THEORY, EVIDENCE FROM PORTFOLIOS, AND IMPLICATIONS FOR THE RISE OF PASSIVE INVESTING

Valentin Haddad

Paul Huebner
UCLA

Erik Loualiche University of Minnesota, Carlson School

Q Group Fall Seminar September 2022

THE RISE OF PASSIVE INVESTING

Active and passive (+ ETF) mutual funds as fraction of US total market cap. (source: ICI)

 \rightarrow How does this change prices and investment opportunities?

- The rise of passive investing
- Regulated financial intermediaries trading more conservatively
- An "arbitrageur" (e.g. Melvin Capital) going bust

THIS PAPER

1. What is the strategic response of investors?

- ► Investor interact in setting trading strategies
 - How does my trading strategy respond to what other investors are doing?

THIS PAPER

1. What is the strategic response of investors?

- Investor interact in setting trading strategies
 - How does my trading strategy respond to what other investors are doing?
- Across many theories, change in trading strategy can be summarized by change in demand elasticity (= aggressiveness)
 - Information acquisition (Grossman Stiglitz 1980)
 - Market power (Kyle 1989)
 - Behavioral friction: bounded rationality, cursed equilibrium
- Simple statistic, degree of strategic response χ : how much does my demand elasticity respond to the aggregate demand elasticity?
 - If someone stops looking for \$20 bills on the floor, how much harder do you look?

This Paper

- 2. Provide a framework to quantify the degree of strategic response and its implications for prices
 - ► Semi-structural approach: equilibrium with exogenously specified decision functions
 - Demand system accounting for large heterogeneity across stocks and investors

- 2-layer equilibrium
 - Competition for the asset: Prices so that investor demands clear market
 - Competition in strategies: Investor interactions in choosing their demand elasticities

THIS PAPER

3. Measure strategic responses in the U.S. stock market

- Strategic response much weaker than benchmark, $\chi=2$ ("competitive" $\chi=\infty$, no response $\chi=0$)
- Direct effect of changes in individual behavior reduced by 60%
- ▶ Rise of passive investing leads to 15% more inelastic aggregate demand curves for individual stocks
 - If buying \$1 of a stock used to raise its price by \$2.5, now the response is \$3
 - More volatility, less liquidity

OUTLINE

1 Our Framework

2 QUANTITATIVE MODEL

3 Estimates of Strategic Response and Implications

OUTLINE

1 Our Framework

2 QUANTITATIVE MODEI

3 Estimates of Strategic Response and Implications

INVESTOR COMPETITION FRAMEWORK: 2-LAYER EQUILIBRIUM

	Individual Decision	Equilibrium Condition
Competition for the asset	$d_i = \underline{d}_i - \mathcal{E}_i \times (p - \bar{p})$	$\int_i D_i(p) = S$

■ Demand elasticity \mathcal{E}_i :

- ▶ Inelastic markets: more impact of flows on prices: 1% increase in demand creates an $M_{agg}=\mathcal{E}_{agg}^{-1}\%$ increase in prices
 - in simple theories: more volatility, less price informativeness, less liquidity

INVESTOR COMPETITION FRAMEWORK: 2-LAYER EQUILIBRIUM

	Individual Decision	Equilibrium Condition
Competition for the asset	$d_i = \underline{d}_i - \mathcal{E}_i \times (p - \bar{p})$	$\int_{i} D_{i}(p) = S$
Competition in strategies	$\mathcal{E}_i = \underline{\mathcal{E}}_i - \chi \times \mathcal{E}_{agg}$	$\int_i \mathcal{E}_i D_i / S = \mathcal{E}_{agg}$

INVESTOR COMPETITION FRAMEWORK: 2-LAYER EQUILIBRIUM

	Individual Decision	Equilibrium Condition
Competition for the asset	$d_i = \underline{d}_i - \mathcal{E}_i \times (p - \overline{p})$	$\int_i D_i(p) = S$
Competition in strategies	$\mathcal{E}_i = \underline{\mathcal{E}}_i - \chi imes \mathcal{E}_{agg}$	$\int_{i} \mathcal{E}_{i} D_{i} / S = \mathcal{E}_{agg}$

$\blacksquare \ \, \textbf{Degree of strategic response} \,\, \chi$

- $ightharpoonup \chi = 0$, no response: each investor follows independent strategies
- $ilde{\nabla} \chi o \infty$, "financial markets are competitive": any change completely counteracted by investor reaction

WHAT DETERMINES THE DEGREE OF STRATEGIC RESPONSE?

Limits to the ability to have a strategic response:

- Investment mandates
- Imperfect knowledge of others' behavior
- Costly information acquisition (Grossman Stiglitz 1980)
- Endogenous risk
- Partial equilibrium thinking (Eyster Rabin 2005, Greenwood Hanson 2014)
- Complementarity (χ < 0): Liquidity (Kyle 1989), peer effects (Hong Kubik Stein 2004, Reddit)

Aggregate Elasticity

- Empirical increase in fraction of passive investors: $\alpha = 70\%$
 - ▶ No strategic response ($\chi = 0$): proportional reduction, $\mathcal{E}_{NEW} = \alpha \mathcal{E}_0 = 70\% \times \mathcal{E}_0$

- Empirical increase in fraction of passive investors: $\alpha = 70\%$
 - No strategic response ($\chi = 0$): proportional reduction, $\mathcal{E}_{NEW} = \alpha \mathcal{E}_0 = 70\% \times \mathcal{E}_0$

- Empirical increase in fraction of passive investors: $\alpha = 70\%$
 - No strategic response ($\chi = 0$): proportional reduction, $\mathcal{E}_{NEW} = \alpha \mathcal{E}_0 = 70\% \times \mathcal{E}_0$

- Empirical increase in fraction of passive investors: $\alpha = 70\%$
 - No strategic response ($\chi = 0$): proportional reduction, $\mathcal{E}_{NEW} = \alpha \mathcal{E}_0 = 70\% \times \mathcal{E}_0$

- Empirical increase in fraction of passive investors: $\alpha = 70\%$
 - No strategic response ($\chi = 0$): proportional reduction, $\mathcal{E}_{NEW} = \alpha \mathcal{E}_0 = 70\% \times \mathcal{E}_0$

- Empirical increase in fraction of passive investors: $\alpha = 70\%$
 - No strategic response ($\chi = 0$): proportional reduction, $\mathcal{E}_{NEW} = \alpha \mathcal{E}_0 = 70\% \times \mathcal{E}_0$

- Empirical increase in fraction of passive investors: $\alpha = 70\%$
 - No strategic response ($\chi = 0$): proportional reduction, $\mathcal{E}_{NEW} = \alpha \mathcal{E}_0 = 70\% \times \mathcal{E}_0$

- Empirical increase in fraction of passive investors: $\alpha = 70\%$
 - No strategic response ($\chi = 0$): proportional reduction, $\mathcal{E}_{NEW} = \alpha \mathcal{E}_0 = 70\% \times \mathcal{E}_0$
 - lacktriangleright "Perfectly competitive financial markets" $(\chi o \infty)$: nothing happens,

$$\mathcal{E}_{NEW} = \alpha \mathcal{E}_0 + (1 - \alpha)\mathcal{E}_0 = \mathcal{E}_0$$

- Empirical increase in fraction of passive investors: $\alpha = 70\%$
 - ldentify the *constant* degree of strategic response using the cross-section $\rightarrow \chi = 2$

- Empirical increase in fraction of passive investors: $\alpha = 70\%$
 - ldentify the constant degree of strategic response using the cross-section $\to \chi = 2$
 - $\Rightarrow \mathcal{E}_{NEW} = 87.5\% \times \mathcal{E}_0$ (vs 100% with full response and 70% without strategic response)

OUTLINE

1 Our Framework

2 QUANTITATIVE MODEL

3 Estimates of Strategic Response and Implications

DATA

- Stock level data
 - CRSP and COMPUSTAT
 - Price and characteristics: book equity, dividends, profitability, investment
- Portfolio data
 - ▶ 13F filings from SEC, 2000–2020 (Backus, Conlon and Sinkinson, 2020)
 - Every institution with AUM over \$100m reports stock positions quarterly
 - ▶ Includes 80% of total ownership in U.S. stock market (2008)
 - Residual for market clearing collected as "households"
 - ► Each quarter: keep track of 1300 investors and 2800 stocks

QUANTITATIVE MODEL

■ Portfolio choice represented by a logit in portfolio shares w_{ik} (Koijen Yogo 2019)

$$\underbrace{\log \frac{w_{ik}}{w_{i0}} - p_k}_{\text{relative demand}} = \underbrace{-\mathcal{E}_{ik} \ p_k}_{\text{price elasticity}} + \underline{\underline{d}_{0i}} + \underline{\underline{d}'_{1i}} X_k + \epsilon_{ik}$$

$$\mathcal{E}_{ik} = \underbrace{\mathcal{E}_{0i} + \mathcal{E}'_{1i}X_k}_{\text{baseline elasticity}} - \underbrace{\chi \; \mathcal{E}_{agg,k}}_{\text{strategic response}}$$

- lacksquare Baseline demand \underline{d}_i
- lacksquare Baseline elasticity $\underline{\mathcal{E}}_i$
 - lacktriangle Embeds Koijen Yogo 2019, who assume no competition: $\chi=0$
- **Passive investors**: $\mathcal{E}_i = 0$ (includes index investing, identified using KY elasticity)

QUANTITATIVE MODEL

■ Portfolio choice represented by a logit in portfolio shares w_{ik} (Koijen Yogo 2019)

$$\underbrace{\log \frac{w_{ik}}{w_{i0}} - p_k}_{\text{relative demand}} = \underbrace{-\mathcal{E}_{ik} \ p_k}_{\text{price elasticity}} + \underline{\underline{d}_{0i}} + \underline{\underline{d}'_{1i}} X_k + \epsilon_{ik}$$

$$\mathcal{E}_{ik} = \underbrace{\mathcal{E}_{0i} + \mathcal{E}'_{1i}X_k}_{\text{baseline elasticity}} - \underbrace{\chi \mathcal{E}_{agg,k}}_{\text{strategic response}}$$

- \blacksquare Baseline demand \underline{d}_i
- lacksquare Baseline elasticity $\underline{\mathcal{E}}_i$
 - lacktriangle Embeds Koijen Yogo 2019, who assume no competition: $\chi=0$
- **Passive investors**: $\mathcal{E}_i = 0$ (includes index investing, identified using KY elasticity)

equilibrium of individual \mathcal{E}_{ik} 's

THREE CHALLENGES FOR ESTIMATION

■ Reflection problem (Manski 1993)

- Endogeneity in demand estimation
 - ► Koijen-Yogo (2019) price instrument + model-based instruments for aggregate elasticity

- Implementation
 - ► An efficient algorithm to run large dimensional regressions and solve all the equilibria simultaneously: process each quarter of data in about 2 minutes

THE REFLECTION PROBLEM

- Does Alice trade GameStop agressively because
 - ightharpoonup she is an agressive trader: high $\underline{\mathcal{E}}_i$
 - of the influence of other traders: $\chi < 0$

THE REFLECTION PROBLEM

- Does Alice trade GameStop agressively because
 - lacktriangle she is an agressive trader: high $\underline{\mathcal{E}}_i$
 - ightharpoonup of the influence of other traders: $\chi < 0$
- \rightarrow Alice faces a different mix of other investors for different stocks

THE REFLECTION PROBLEM

- Does Alice trade GameStop agressively because
 - lacktriangle she is an agressive trader: high $\underline{\mathcal{E}}_i$
 - of the influence of other traders: $\chi < 0$
- \rightarrow Alice faces a different mix of other investors for different stocks

THEOREM

Unique decomposition between $\underline{\mathcal{E}}_i$ and χ if:

- Graph G of investor-stock links is connected
- 2 Average individual elasticities $\sum_{i} \underline{\mathcal{E}}_{ik} w_{ik} A_i/p_k$ vary across stocks

OUTLINE

1 Our Framework

2 QUANTITATIVE MODEL

3 Estimates of Strategic Response and Implications

Estimates of Strategic Response χ

■ Degree of strategic response estimate stable over time, $\chi = 2.15$

- **Substantial individual response**: The same investor responds less to price movements for assets with more aggressive investors than assets with less aggressive investors
 - \blacktriangleright If all other investors are more elastic by 1, lower my elasticity by 2.15

- \blacksquare Far from "competitive financial markets", $\chi \ll \infty$
 - In simple calculation, needed $\chi>18$ to compensate 90% of direct effect

ROBUSTNESS OF COMPETITION ESTIMATES

	Estimates for χ		
	Median	25th pct.	75th pct.
(1) Baseline Specification	2.15	1.81	2.76
(2) BE-weighted Instrument for \mathcal{E}_{agg}	1.91	1.52	2.31
(3) Additional Controls	2.51	2.09	3.5
(4) AUM-weighted Regression	2.3	1.81	2.8
(5) Book-weighted Regression	2.27	1.76	2.78
(6) Investor-Type Grouping	2.42	1.93	2.94
(7) Constant χ	1.95		
(8) No Instrument for \mathcal{E}_{aqq}	1.21	0.77	1.56
(9) No Instruments	0.96	0.67	1.38

ESTIMATES OF AGGREGATE ELASTICITY BY STOCK

- Elasticities are low ≈ 0.4 : consistent with previous studies
- Size effect: less willing to adjust positions with large weights
- Less cross-sectional variation: important to account for the elasticity equilibrium
 - ► If an active investor shows up in one stock, others become more passive

THE RISE OF PASSIVE INVESTING

Active and passive (+ ETF) mutual funds as fraction of US total market cap. (source: ICI)

■ In our estimation, fraction of active investors down from 81% to 59% from 2001 to 2020

The Rise of Passive Investing

What does the model predict about the effect of this trend?

Aggregate elasticity equilibrium:

$$\mathcal{E}_{agg,k} = \underbrace{|A_k|}_{\text{fraction active}} \times \underbrace{\mathbf{E}\left(\underline{\mathcal{E}}_{ik} \middle| i \in A_k\right)}_{\text{avg. active elasticity}} \times \underbrace{\frac{1}{1 + \chi |A_k|}}_{\text{general equilibrium}}$$

- Effect of change in active share:
 - Assuming random investors switch:

$$\frac{d \log \mathcal{E}_{agg}}{d \log |A|} = \frac{1}{1 + \underbrace{\chi}_{2.15} \underbrace{|A|}_{68\%}} = 40.6\%$$

Elasticities drop by $40.6\% \times 32\% = 13\%$

DECOMPOSING ACTUAL CHANGES IN ELASTICITY

IMPLICATIONS FOR PRICE DYNAMICS

The rise of passive investing decreased elasticities by 13%

elasticity $\downarrow \Rightarrow$ volatility \uparrow , price informativeness \uparrow , liquidity \downarrow

	Total Volatility (1)	Idiosyncratic Volatility (2)	Price informativeness (3)	Illiquidity (4)
Elasticity	-0.867*** (0.173)	-0.846^{***} (0.145)	-0.365 (0.833)	-0.742^{***} (0.278)
Controls	Yes	Yes	Yes	Yes
Estimator N	IV	IV	IV	IV
R^2	219,663 0.164	206,134 0.193	66,707 0.015	216,893 0.551

BEYOND PASSIVE INVESTING

Lack of strategic response implies that:

■ There are profitable trading opportunities where others haven't stepped in yet

■ There are crowded trades that many take even if unprofitable

■ Key source of information: follow where different investors are going, analyze holdings data

CONCLUSION

- **Degree of strategic response** χ : useful statistic to understand the equilibrium effect of changes in specific investors' behavior
 - ► A tractable approach: 2-layer equilibrium
- Stock market far from the "perfectly competitive ideal", $\chi=2\ll\infty$
 - ► Dampen direct effects by 60%
- Rise of passive investing leads to 15% more inelastic markets
 - ► Effect on cross-section of stocks in the paper

CONCLUSION

- **Degree of strategic response** χ : useful statistic to understand the equilibrium effect of changes in specific investors' behavior
 - A tractable approach: 2-layer equilibrium
- Stock market far from the "perfectly competitive ideal", $\chi=2\ll\infty$
 - ► Dampen direct effects by 60%
- Rise of passive investing leads to 15% more inelastic markets
 - ► Effect on cross-section of stocks in the paper
- More applications:
 - Financial health and regulation of intermediaries
 - Role of big data
 - ▶ International finance: what if China stops buying treasuries?

Asymmetry of Mispricing

Do prices respond more to demand when the asset is overpriced or underpriced?

$$M_{agg} = \frac{1}{\mathcal{E}_{agg}} \cdot \frac{1}{1 + \frac{\chi}{1 + \chi} \frac{Var[\mathcal{E}_i]}{\mathcal{E}_{agg}} (p - \bar{p})},$$

- No competition: overpriced asset drives out elastic investors, aggregate elasticity drops
 → high multiplier
- Full competition: competition compensate previous effect, and higher individual elasticity drives lower demand when asset is overpriced \rightarrow low multiplier
- Overpricing stronger than underpricing when competition is low, strength depends on investor heterogeneity
 - Stock strategies: Stambaugh Yu Yuan (2012, 2015)

Arbitrage Dynamics

- Key source of instability with limits to arbitrage: aggressive investors suffer more when mispricing gets worse \rightarrow arbitrage capacity is lost \rightarrow mispricing becomes even worse (Shleifer Vishny 1990, Brunnermeier Pedersen 2008)
- How much does competition limit this instability?

$$\Delta p = M_{agg} \times \left[\mathbf{E} \left(\Delta \underline{d}_i \right) + \frac{\chi}{1 + \chi} \left(p - \overline{p} \right) \ Cov(\mathcal{E}_i, \Delta \underline{d}_i) \right]$$

- Consider an underpriced asset becoming worse: negative demand shock affecting disproportionately high-elasticity investors $(p < \bar{p}, Cov(\mathcal{E}_i, \Delta \underline{d}_i) < 0)$
- Classic force: high-elasticity investors have larger position, so contribute more to a drop in price
- ▶ Competition compensation: increase in all other investors elasticity creates more demand

Linearity-Generating Cost Functions

Proposition. For any a>0 and b>0 so that ab>1, assume the information cost follows the function:

$$c_i(x) = 0$$
, if $x < 0$,
$$c_i(x) = \frac{1}{\rho_i} \frac{1}{\sqrt{2ab - 1}} \arctan\left(\frac{b\frac{x}{\rho_i} + (1 - ab)}{\sqrt{2ab - 1}}\right) + K$$
, if $0 \le x/\rho_i \le a - b^{-1}$
$$c_i(x) = +\infty$$
, if $x/\rho_i \ge a - b^{-1}$,

where K is such that $c_i(0) = 0$. This cost function is increasing and convex. Then the optimal elasticity is:

$$\mathcal{E}_i = \underline{\mathcal{E}}_i - \chi \mathcal{E}_{agg},$$
 with $\underline{\mathcal{E}}_i = a$ and $\chi = \sqrt{(2\sigma_x^{-2})/(\rho_i b)}.$

DEMAND ESTIMATION

$$\log \frac{w_{ik}}{w_{i0}} - p_k = \underline{d}_{0i} + \underline{d}'_{1i}X_k - (\underline{\mathcal{E}}_{0i} + \underline{\mathcal{E}}'_{1i}X_k - \chi \ \mathcal{E}_{agg,k}) \times p_k + \epsilon_{ik}$$

DEMAND ESTIMATION

$$\log \frac{w_{ik}}{w_{i0}} - p_k = \underline{d}_{0i} + \underline{d}'_{1i}X_k - (\underline{\mathcal{E}}_{0i} + \underline{\mathcal{E}}'_{1i}X_k - \chi \ \mathcal{E}_{agg,k}) \times p_k + \epsilon_{ik}$$

Classic endogeneity in demand estimation: aggregate elasticity and prices are equilibrium outcomes

- If investors demand more of the stock, the price will be high
 - ▶ OLS invalid: $\mathbb{E}[\epsilon_{ik}|p_k] \neq 0$
- Instrument for the price: $\mathbb{E}[\epsilon_{ik}|\hat{p}_{ik}]=0$
 - \hat{p}_{ikt} : how much money would go towards stock k if all other investors invested in equal-weighted portfolio (Koijen Yogo 2019)
- Model-based instrument for the aggregate elasticity $\mathbb{E}[\epsilon_{ik}|\hat{\mathcal{E}}_{agg,k}]=0$
 - $\hat{\mathcal{E}}_{agg,k}$: what would the aggregate elasticity if investors used equal-weighted portfolios (depends on estimates of \mathcal{E}_{ik})

IMPLEMENTATION: CONFRONTING THE 2-LAYER EQUILIBRIUM

$$\log \frac{w_{ik}}{w_{i0}} - p_k = \underline{d}_{0i} + \underline{d}'_{1i} X_k - \left(\underline{\mathcal{E}}_{0i} + \underline{\mathcal{E}}'_{1i} X_k - \chi \, \mathcal{E}_{agg,k}\right) \times p_k + \epsilon_{ik}$$

- lacktriangle Competition χ ties together investor decisions
 - lacktriangle Without competition: only investor-specific coefficients ightarrow lots of small regressions
 - ► Together: many fixed effects, interacted fixed effects, ...
- lacksquare Unknown equilibrium aggregate elasticities $\mathcal{E}_{agg,k}$
 - Must satisfy elasticity equilibrium condition

IMPLEMENTATION: CONFRONTING THE 2-LAYER EQUILIBRIUM

$$\log \frac{w_{ik}}{w_{i0}} - p_k = \underline{d}_{0i} + \underline{d}'_{1i} X_k - \left(\underline{\mathcal{E}}_{0i} + \underline{\mathcal{E}}'_{1i} X_k - \chi \, \mathcal{E}_{agg,k}\right) \times p_k + \epsilon_{ik}$$

- \blacksquare Competition χ ties together investor decisions
 - lacktriangle Without competition: only investor-specific coefficients ightarrow lots of small regressions
 - ► Together: many fixed effects, interacted fixed effects, ...
- lacksquare Unknown equilibrium aggregate elasticities $\mathcal{E}_{agg,k}$
 - Must satisfy elasticity equilibrium condition
 - ightarrow **Solution**: Flip fixed point problem in terms of χ instead of $\mathcal{E}_{agg,k}$ (5 minutes vs. hours)

Instruments

■ Price (Koijen Yogo 2019)

$$\hat{p}_{k,i} = \log \left(\sum_{j \neq i} A_j \frac{\mathbf{1}_{k \in \mathcal{K}_j}}{|\mathcal{K}_j|} \right),$$

Aggregate elasticity

$$\hat{\mathcal{E}}_{agg,k} = \frac{1}{1 + \chi |Active_k|} \frac{\sum_{j \in Active_k} A_j / |\mathcal{K}_j| \cdot \mathbf{1}_{k \in \mathcal{K}_j} \cdot \underline{\mathcal{E}}_{jk}}{\sum_{j \in Active_k} A_j / |\mathcal{K}_j| \cdot \mathbf{1}_{k \in \mathcal{K}_j}}$$

- lacktriangle Model-based instrument: depends on estimated $\underline{\mathcal{E}}_{jk}$
- Valid for estimation
- ▶ Renders 2SLS impossible: must be computed simultaneously with estimation

IMPLEMENTATION: CONFRONTING THE 2-LAYER EQUILIBRIUM

$$\log \frac{w_{ik}}{w_{i0}} - p_k = \underline{d}_{0i} + \underline{d}'_{1i} X_k - \left(\underline{\mathcal{E}}_{0i} + \underline{\mathcal{E}}'_{1i} X_k - \chi \mathcal{E}_{agg,k}\right) \times p_k + \epsilon_{ik}$$

- Efficient solution:
 - \blacksquare Start with $(\chi, \mathcal{E}_{agg})$
 - ★ Estimate $(\underline{\mathcal{E}}_{0i},\underline{\mathcal{E}}_{1i})$ using regression for each investor i
 - \star Update \mathcal{E}'_{agg} by solving the elasticity equilibrium conditions

 - \blacksquare Start with χ
 - * Estimate the overall regression (with all investors) with $\mathcal{E}_{agg}(\chi)$ as data
 - ***** Gives an estimate χ'
 - \blacksquare Fixed point of the mapping from $\chi \mapsto \chi'$

Trading Activity as a Function of Portfolio Weight

Define trading activity as relative square change in shares:

$$\left(\frac{Shares_{ik,t} - Shares_{ik,t-1}}{Shares_{ik,t}}\right)^2$$

Cumulative fraction of cumulative trading activity by percentile of portfolio weight:

DECOMPOSING ACTUAL CHANGES IN ELASTICITY

COUNTERFACTUAL CHANGES IN ELASTICITY

What would have been the effect of these changes with different levels of competition?

- Start from 2000 distribution of equilibrium elasticities
- lacktriangle Assume same changes in passive share, and in individual level elasticity $\underline{\mathcal{E}}_{i,k}$
- Input different competitive response:
 - Perfect competition: stock-level elasticities unchanged
 - ▶ No competition: no change in competitive response

COUNTERFACTUAL CHANGES IN ELASTICITY

What would have been the effect of these changes with different levels of competition?

