What Drives Variation in the U.S. Debt/Output Ratio? The Dogs that Didn't Bark

Zhengyang Jiang ${ }^{1}$ Hanno Lustig ${ }^{2}$
Stijn Van Nieuwerburgh ${ }^{3}$ Mindy Zhang Xiaolan ${ }^{4}$
${ }^{1}$ Northwestern Kellogg
${ }^{2}$ Stanford GSB
${ }^{3}$ Columbia Business School
${ }^{4}$ University of Texas at Austin

Q Group Seminar, September 2022

Fiscal Sustainability

Federal Debt Held by the Public, 1900 to 2050

Fiscal Sustainability: Forward-looking Approach

- Ongoing debate in the U.S. about fiscal sustainability
- Current run-up in the U.S. debt/output ratio reflects:

1. Lower future inflation-and-growth adjusted returns on government debt (Blanchard, 2019; Furman and Summers, 2020; Cochrane, 2021a) :

- $(r-g)<0$ debate

2. Higher future surpluses (Bohn, 1998; Cochrane, 2020)
3. Higher future debt/output ratio

This Paper

- Apply standard asset pricing machinery (Campbell-Shiller decomposition) to a macro question (fiscal sustainability)
- Campbell-Shiller decomposition of the U.S. debt/output ratio :

1. Discount rates: No evidence that the debt/output ratio predicts real growth-adjusted returns. \boldsymbol{X}
2. Cash flows: No evidence that the debt/output ratio predicts surpluses. \boldsymbol{X}
3. Residual: higher future debt/output ratio \checkmark
\Rightarrow Excess smoothness: Bond prices today not responsive to news about future macro fundamentals

Findings Differ From Literature

- Earlier work:
- Bohn (1998), studying a sample that ends in the mid-1990s, finds evidence that the primary surplus increases when the debt/output ratio is high
- Cochrane (2021a,b) finds evidence that the debt/output ratio predicts lower nominal returns on the government debt portfolio
- This paper: no evidence that the debt/output ratio predicts surpluses or real growth-adjusted returns
- Key observation: Large small-sample bias (Stambaugh, 1999) in the slope coefficients of the return and surplus predictability regressions due to:

1. High persistence of the debt/output ratio (the predictor)
2. High correlation between the innovations to the predictor and the predicted variables

Related Literature

- Stock return predictability (Campbell and Thompson, 2007; Cochrane, 2008; Binsbergen and Koijen, 2010; Goyal and Welch, 2005; Golez and Koudijs, 2018):
- Discount rates on stocks are remarkably volatile (Hansen and Jagannathan, 1991),
- Valuation of stocks seems excessively volatile compared to its fundamentals (LeRoy and Porter, 1981; Shiller, 1981),
- High valuations imply low future returns (mean reversion in valuation ratios),
- Bond return predictability: (Fama and Bliss, 1987; Campbell and Shiller, 1991; Cochrane and Piazzesi, 2005; Ludvigson and Ng, 2009; Cochrane, 2011),
- Individual bond return predictability,
- For entire bond portfolio: high valuations do not imply low future returns (no mean reversion in valuation ratios),
- Valuation of bonds seems too smooth compared to its fundamentals

Variance Decomposition of Debt/Output

Campbell-Shiller Decomposition of Debt/Output Ratio

- Log-linearized return equation implied by the government budget constraint:

$$
\widetilde{r}_{t+1}=r_{t+1}-\pi_{t+1}-x_{t+1}=\rho v_{t+1}-v_{t}+s_{t+1},
$$

where $\rho=\exp (-(r-x-\pi))$ is a constant, v_{t} is \log of debt/output ratio, and $s_{t+j}=s y_{t+j} / e^{v}$ is a scaled measure of surplus/output.
(see Gourinchas and Rey, 2007; Berndt, Lustig, and Yeltekin, 2012; Cochrane, 2021a)

- Similar to log-linearized return for stocks:

$$
r_{t+1}=\rho p d_{t+1}-p d_{t}+\Delta d_{t+1} .
$$

- By iterating this forward T times and taking expectations, we obtain the debt valuation equation:

$$
v_{t}=\mathbb{E}_{t} \sum_{j=1}^{T} \rho^{j-1}\left(s_{t+j}-\widetilde{r}_{t+j}\right)+\mathbb{E}_{t} \rho^{T} v_{t+T} .
$$

Variance Decomposition

- We set $\rho=1$ (" $\mathrm{r}=\mathrm{g}$ ").
- Debt/output ratio reflects either future surpluses or future returns after adjusting for inflation and growth.

$$
v_{t}=\mathbb{E}_{t} \sum_{j=1}^{T}\left(s_{t+j}-\widetilde{r}_{t+j}\right)+\mathbb{E}_{t} v_{t+T} .
$$

- Debt/output ratio varies because it either predicts future surpluses, future returns, or the future debt/output ratio:

Variance Decomposition of the Debt/Output Ratio.

$$
\operatorname{var}\left(v_{t}\right)=\operatorname{cov}\left(\sum_{j=1}^{T} s_{t+j}, v_{t}\right)-\operatorname{cov}\left(\sum_{j=1}^{T} \widetilde{r}_{t+j}, v_{t}\right)+\operatorname{cov}\left(v_{t}, v_{t+T}\right) .
$$

Variance Decomposition: Implementation

- Estimate a system of univariate forecasting regressions for $\sum_{j=1}^{T} s_{t+j}, \sum_{j=1}^{T} \widetilde{r}_{t+j}, v_{t+j}$ using the lagged debt/output ratio as a predictor:

$$
\begin{aligned}
\sum_{j=1}^{T} s_{t+j} & =a_{s}+b_{T}^{s} v_{t}+\epsilon_{t+T}^{s} \\
\sum_{j=1}^{T} \widetilde{r}_{t+j} & =a_{r}+b_{T}^{r} v_{t}+\epsilon_{t+T}^{r} \\
v_{t+T} & =\phi_{0}+\phi_{T} v_{t}+\epsilon_{t+T}^{v} .
\end{aligned}
$$

- More reliable estimates of long-run dynamics than VAR (Jordà, 2005)
- Cochrane (2008); Lettau and Van Nieuwerburgh (2008) adopt the same approach to implementing a Campbell-Shiller decomposition of the price/dividend ratio for stocks.

Variance Decomposition: Implementation

- Regression coefficients can be interpreted as the fraction of the variance of v_{t} explained by each component for a certain horizon T :

$$
\begin{aligned}
\frac{\operatorname{cov}\left(\sum_{j=1}^{T} s_{t+j}, v_{t}\right)}{\operatorname{var}\left(v_{t}\right)} & =b_{T}^{s} \\
\frac{\operatorname{cov}\left(-\sum_{j=1}^{T} \tilde{r}_{t+j}, v_{t}\right)}{\operatorname{var}\left(v_{t}\right)} & =-b_{T}^{r} \\
\frac{\operatorname{cov}\left(v_{t+T}, v_{t}\right)}{\operatorname{var}\left(v_{t}\right)} & =\phi_{T}
\end{aligned}
$$

- Cross-equation restriction is satisfied: $b_{T}^{s}-b_{T}^{r}+\phi_{T}=1, \forall T$.
- Fiscal sustainability: $\phi_{T}<1$ for all T and $\phi_{T} \rightarrow 0$ as $T \rightarrow \infty$.

Variance Decomposition of $v_{t}:$ No Bias Correction (1947-2020)

Horizon	1	2	3	4	5	6	7	8	9	10
Forecasting $\sum_{j=1}^{T}-\widetilde{r}_{t+j}$										
$-b_{T}^{r}$	0.01	0.03	0.05	0.07	0.08	0.1	0.13	0.17	0.21	0.25
S.e.	0.02	0.04	0.05	0.07	0.08	0.09	0.11	0.12	0.13	0.13
R^{2}	0.01	0.02	0.03	0.04	0.04	0.05	0.06	0.08	0.10	0.12
Forecasting $\sum_{j=1}^{T} s_{t+j}$										
b_{T}^{s}	-0.02	-0.01	0.02	0.06	0.09	0.13	0.18	0.24	0.31	0.39
S.e.	0.02	0.04	0.08	0.11	0.14	0.17	0.2	0.22	0.24	0.26
R^{2}	0.02	0	0	0.01	0.02	0.03	0.05	0.06	0.09	0.11
Forecasting v_{t+T}										
ϕ	1.01	0.98	0.93	0.88	0.83	0.77	0.69	0.59	0.48	0.36
s.e.	0.03	0.07	0.11	0.16	0.2	0.24	0.27	0.3	0.33	0.35
R^{2}	0.95	0.85	0.74	0.64	0.54	0.43	0.32	0.22	0.13	0.07

Variance Decomposition of $v_{t}:$ No Bias Correction (1947-2020)

- Cannot reject the null of the presence of the unit root
- At the $5-\mathrm{yr}$ horizon, 83% of the debt/output fluctuations can be attributed to the future debt/output
- At the 10-hr horizon, both cash flow and discount rate channels start to matter, but cannot reject the null that the fraction is zero

Small-sample Bias in Predictive Coefficients

- Small-sample bias Stambaugh (1999); Boudoukh, Israel, and Richardson (2020) for horizon T :

$$
\begin{aligned}
\operatorname{bias}_{T}^{r} & =\mathbb{E}\left(\widehat{b}_{T}^{r}-b_{T}^{r}\right)=\frac{1}{N}\left[T(1+\phi)+2 \phi \frac{1-\phi^{T}}{1-\phi}\right] \times-\frac{\operatorname{cov}\left(\epsilon^{v}, \epsilon^{r}\right)}{\operatorname{var}\left(\epsilon^{v}\right)}, \\
\text { bias }_{T}^{s} & =\mathbb{E}\left(\widehat{b}_{T}^{s}-b_{T}^{s}\right)=\frac{1}{N}\left[T(1+\phi)+2 \phi \frac{1-\phi^{T}}{1-\phi}\right] \times-\frac{\operatorname{cov}\left(\epsilon^{v}, \epsilon^{s}\right)}{\operatorname{var}\left(\epsilon^{v}\right)},
\end{aligned}
$$

where ϕ is first-order autocorrelation of v_{t}, N sample size

- Here: $\phi=.99, \operatorname{corr}\left(\epsilon^{v},-\epsilon^{r}\right)=-0.75$ and $\operatorname{corr}\left(\epsilon^{v}, \epsilon^{s}\right)=-0.85$.
\Rightarrow Biases for b_{T}^{s} and $-b_{T}^{r}$ are positive and large.
\Rightarrow We are overstating the surplus and return predictability in small samples.

Variance Decomposition of $v_{t}:$ Bias Correction (1947-2020)

Horizon	1	2	3	4	5	6	7	8	9	10
Forecasting $\sum_{j=1}^{T}-\widetilde{r}_{t+j}$										
$-b_{T}^{r}$	0.01	0.03	0.05	0.07	0.08	0.1	0.13	0.17	0.21	0.25
s.e.	0.02	0.04	0.05	0.07	0.08	0.09	0.11	0.12	0.13	0.13
R^{2}	0.01	0.02	0.03	0.04	0.04	0.05	0.06	0.08	0.1	0.12
unbiased	-0.01	-0.02	-0.02	-0.03	-0.04	-0.04	-0.04	-0.01	0	0.02
Forecasting $\sum_{j=1}^{T} s_{t+j}$										
$b_{T}^{\text {s }}$	-0.02	-0.01	0.02	0.06	0.09	0.13	0.18	0.24	0.31	0.39
s.e.	0.02	0.04	0.08	0.11	0.14	0.17	0.2	0.22	0.24	0.26
R^{2}	0.02	0	0	0.01	0.02	0.03	0.05	0.06	0.09	0.11
unbiased	-0.05	-0.07	-0.08	-0.07	-0.07	-0.06	-0.05	-0.03	0.01	0.05
Forecasting v_{t+T}										
ϕ	1.01	0.98	0.93	0.88	0.83	0.77	0.69	0.59	0.48	0.36
s.e.	0.03	0.07	0.11	0.16	0.2	0.24	0.27	0.3	0.33	0.35
R^{2}	0.95	0.85	0.74	0.64	0.54	0.43	0.32	0.22	0.13	0.07
unbiased	1.07	1.09	1.1	1.1	1.11	1.11	1.08	1.04	0.99	0.92

Variance Decomposition of $v_{t}:$ Bias Correction (1947-2020)

- The bias-corrected variance decomposition attributes -4% and -7% of the debt/output ratio variance to the discount rate and cash flow channel respectively at the 5-year horizon.
- As a result, 111% is accounted for by the future debt/output ratio at the 5-year horizon.
- At the 10-year horizon, we still attribute 92% of the variance to the future debt/output ratio, after correcting for the small-sample bias.

Variance Decomposition: Robustness

- Longer U.S. Hall-Payne-Sargent sample: 1842-2020
- Same conclusion after small-sample bias correction
- Now have more power to reject the null of no return predictability

After Bias Correction

Variance Decomposition: Robustness

- Longer U.S. Hall-Payne-Sargent sample: 1842-2020 \checkmark
- Shorter Bohn Sample 1948-1995 \downarrow

After Bias Correction

Permanent Shocks to the Debt/Output Ratio

1. Simulation under Null of Unit Root simulation
2. Structural Break

Structural Breaks

- A major contributor to the small role of fundamentals is the large run-up in debt/output ratio during the GFC

Structural Breaks

- A major contributor to the small role of fundamentals is the large run-up in debt/output ratio during the GFC
- Structural break in the log debt/output ratio (Lettau and Van Nieuwerburgh (2008)): demean the log debt/output ratio $\widetilde{v}_{t}=v_{t}-\bar{v}_{t}$ with a lower pre-2007 sample mean ($\bar{v}_{t}, t<2007$) and a higher post-2007 sample mean ($\bar{v}_{t}, t \geq 2007$).
- This structural break introduces a 78 log point permanent increase in the debt/output ratio; we 'delete' this increase from the variance decomposition.
- Decrease in ϕ has to increase surplus/return predictability (cross-equation restriction): $\left(b_{T}^{s}-b_{T}^{r}\right) \nearrow=\left(1-\phi_{T}\right) \nearrow$.
- Variance of the transitory component of debt/output ratio:

$$
\operatorname{var}\left(\widetilde{v}_{t}\right)=\operatorname{cov}\left(\sum_{j=1}^{T} s_{t+j}, \widetilde{v}_{t}\right)-\operatorname{cov}\left(\sum_{j=1}^{T} \widetilde{r}_{t+j}, \widetilde{v}_{t}\right)+\operatorname{cov}\left(\widetilde{v}_{t}, \widetilde{v}_{t+T}\right)
$$

Structural Breaks

- A major contributor to the small role of fundamentals is the large run-up in debt/output ratio during the GFC

Structural Breaks

- A major contributor to the small role of fundamentals is the large run-up in debt/output ratio during the GFC
- Structural break in the log debt/output ratio (Lettau and Van Nieuwerburgh (2008)): demean the log debt/output ratio $\widetilde{v}_{t}=v_{t}-\bar{v}_{t}$ with a lower pre-2007 sample mean ($\bar{v}_{t}, t<2007$) and a higher post-2007 sample mean ($\bar{v}_{t}, t \geq 2007$).
- This structural break introduces a 78 log point permanent increase in the debt/output ratio; we 'delete' this increase from the variance decomposition.
- Decrease in ϕ has to increase surplus/return predictability (cross-equation restriction): $\left(b_{T}^{s}-b_{T}^{r}\right) \nearrow=\left(1-\phi_{T}\right) \nearrow$.
- Variance of the transitory component of debt/output ratio:

$$
\operatorname{var}\left(\widetilde{v}_{t}\right)=\operatorname{cov}\left(\sum_{j=1}^{T} s_{t+j}, \widetilde{v}_{t}\right)-\operatorname{cov}\left(\sum_{j=1}^{T} \widetilde{r}_{t+j}, \widetilde{v}_{t}\right)+\operatorname{cov}\left(\widetilde{v}_{t}, \widetilde{v}_{t+T}\right)
$$

Variance Decomposition of \widetilde{v}_{t} with Break

- Stronger evidence for surplus, but not return predictability
- Fundamentals now account for about 50% of the variation in the transitory component of the debt/output ratio at the 10-year horizon
- Still leave the large, permanent increase in the debt/output ratio (as well as its timing) unexplained

Structural Break Candidate 1: Biased Beliefs

- Econometrician does not predict higher surpluses or lower returns when the debt/output ratio rises, but bond investors may.
- If investors systematically over-predict surpluses and under-predict returns when the debt/output ratio increases, their forecast error can impute a unit root in the debt/output ratio under the actual measure \mathbb{E}, while the debt/output ratio is stationary under the subjective beliefs measure \mathbb{F}

$$
v_{t} \quad=\mathbb{E}_{t} \sum_{j=1}^{T}\left(s_{t+j}-\widetilde{r}_{t+j}\right)+\underbrace{(\mathbb{F}_{t} v_{t+T}+\overbrace{\left(\mathbb{F}_{t}-\mathbb{E}_{t}\right) \sum_{j=1}^{T}\left(s_{t+j}-\widetilde{r}_{t+j}\right)}^{\text {ForcErr }})}_{\mathbb{E}_{t} v_{T}}
$$

$-\operatorname{Cov}\left(v_{t}, \mathbb{E}_{t} v_{T}\right)$ large and $\operatorname{Cov}\left(v_{t}, \mathbb{F}_{t} v_{T}\right)$ small if $\operatorname{Cov}\left(v_{t}\right.$, ForcErr $) \gg 0$

Private Forecasts Align with CBO Forecasts

Figure: Comparing CBO and Private-Sector Surplus Forecasts

Ten-year CBO Projections

Debt/Ouput
Surplus/Ouput

- CBO systematically over-predicts future surpluses when debt rises and underpredicts future debt/output, especially since GFC.
- Forecast errors were close to zero from 1980 to 1997.

Predictability Under Subjective Measure

- Estimate the CS decomposition under subjective beliefs
- Using the CBO forecast for the surplus/GDP ratio after 2007.

Structural Break Candidate 2: Fed \& ROW

- Fed and Foreign holdings of Treasurys accelerated after GFC (QE)
- Private domestic holdings (ex-Fed, ex-ROW) are candidate transitory component \tilde{v}_{t}

Structural Break Candidate 2: Fed \& ROW

- Fed and Foreign holdings of Treasurys accelerated after GFC (QE)
- Private domestic holdings (ex-Fed, ex-ROW) are candidate transitory component \tilde{v}_{t}

- We still cannot reject the null that surpluses are not predictable

Conclusion

- The U.S. bond market's valuation surprisingly insensitive to news about future surpluses or returns
- Difficult to reject null hypothesis of unit root in debt/output once small-sample bias is addressed
- Interpretations: persistent component in debt/ouput ratio (structural break after 2007) imputed by

1. Fed and ROW purchases
2. Bond market investors' (overly optimistic) beliefs about future fiscal rectitude

Data: Decade Averages

	\tilde{r}	r	x	π	$x+\pi$	s / y
$1947-1949$	-7.8%	-1.8%	0.6%	5.4%	6.0%	1.5%
$1950-1959$	-3.8%	2.7%	4.1%	2.4%	6.5%	1.4%
$1960-1969$	-2.8%	3.9%	4.4%	2.3%	6.7%	1.4%
$1970-1979$	-2.5%	7.0%	3.2%	6.3%	9.5%	-0.6%
$1947-1979$	-3.5%	3.9%	3.6%	3.8%	7.4%	0.8%
$1980-1989$	4.1%	11.8%	3.0%	4.6%	7.6%	0.1%
$1990-1999$	1.6%	6.9%	3.2%	2.2%	5.3%	1.5%
$2000-2009$	0.8%	4.9%	1.9%	2.2%	4.1%	0.0%
$2010-2020$	-0.4%	2.9%	1.7%	1.6%	3.3%	-0.4%
$1980-2020$	1.5%	6.5%	2.4%	2.6%	5.1%	-0.6%
$1947-2020$	-0.7%	5.4%	3.0%	3.2%	6.1%	0.1%

- Note that $r<g$ or $\tilde{r}<0$ only in first half of post-war sample
- Surpluses came down over time
- Does variation in v_{t} predict this secular variation in $\tilde{r}_{t \rightarrow t+10}$ or $s_{t \rightarrow t+10}$?

Returns and Surpluses

This figure plots the inflation-and-growth-adjusted \log returns \tilde{r}_{t} and the surplus/output ratio s_{t}.

Variance Decomposition of $v_{t}:$ Longer Sample 1842-2020

- Robustness to longer U.S. Hall-Payne-Sargent sample

Panel A: Before Bias Correction

Variance Decomposition of v_{t} : Longer Sample 1842-2020

- Same conclusion after small-sample bias correction
- Now have more power to reject the null of no return predictability

Panel B: After Bias Correction

Variance Decomposition of $v_{t}:$ Shorter Bohn Sample 1948-1995

Panel A: Before Bias Correction

Variance Decomposition of $v_{t}:$ Shorter Bohn Sample 1948-1995

Panel B: After Bias Correction

Forecasting Nominal Returns and Inflation with v_{t}

Horizon	1	2	3	4	5	6	7	8	9	10
Forecasting $\sum_{j=1}^{T} r_{t+j}$										
b_{T}^{r}	-0.05	-0.11	-0.16	-0.22	-0.28	-0.35	-0.43	-0.52	-0.6	-0.69
s.e.	[0.02]	[0.03]	[0.05]	[0.06]	[0.07]	[0.08]	[0.09]	[0.1]	[0.11]	[0.13]
Forecasting $\sum_{j=1}^{T} x_{t+j}$										
b_{T}^{x}	0	0	0.01	0	0	0	0.01	0.01	0.02	0.03
s.e.	[0.01]	[0.02]	[0.03]	[0.04]	[0.05]	[0.06]	[0.06]	[0.07]	[0.08]	[0.08]
Forecasting $\sum_{j=1}^{T} \pi_{t+j}$										
b_{T}^{π}	-0.04	-0.08	-0.12	-0.16	-0.21	-0.26	-0.31	-0.37	-0.42	-0.48
s.e.	[0.01]	[0.01]	[0.02]	[0.02]	[0.03]	[0.04]	[0.05]	[0.06]	[0.08]	[0.09]
Forecasting $\sum_{j=1}^{T} \widetilde{r}_{t+j}$										
$b_{T}^{\tilde{r}}$	-0.01	-0.03	-0.05	-0.06	-0.07	-0.09	-0.13	-0.16	-0.2	-0.25
s.e.	[0.01]	[0.02]	[0.03]	[0.04]	[0.05]	[0.06]	[0.06]	[0.07]	[0.08]	[0.09]

Forecasting Returns and Surpluses with $\widetilde{v_{t}}$

Horizon	1	2	3	4	5	6	7	8	9	10
	Structural Break									
	Forecasting $\sum_{j=1}^{I}-\widetilde{r}_{t+j}$									
$-b_{T}^{r}$	0.03	0.05	0.07	0.07	0.07	0.08	0.11	0.16	0.2	0.24
s.e.	0.03	0.05	0.07	0.09	0.11	0.13	0.14	0.16	0.17	0.18
R^{2}	0.02	0.03	0.04	0.03	0.02	0.02	0.04	0.06	0.08	0.1
unbiased	0.01	0.02	0.03	0.02	0.01	0.02	0.04	0.07	0.11	0.14
Forecasting $\sum_{j=1}^{T} s_{t+j}$										
b_{T}^{s}	0.07	0.16	0.25	0.34	0.41	0.46	0.51	0.56	0.62	0.68
s.e.	0.03	0.07	0.11	0.13	0.16	0.17	0.19	0.2	0.21	0.23
R^{2}	0.04	0.12	0.2	0.29	0.36	0.42	0.47	0.5	0.53	0.57
unbiased	0.03	0.08	0.14	0.2	0.23	0.25	0.27	0.29	0.32	0.36
Forecasting v_{t+T}										
ϕ	0.91	0.79	0.68	0.59	0.53	0.45	0.38	0.29	0.19	0.08
s.e.	0.05	0.09	0.13	0.16	0.19	0.2	0.22	0.23	0.23	0.24
R^{2}	0.86	0.7	0.55	0.44	0.35	0.27	0.19	0.11	0.05	0.01
unbiased	0.96	0.89	0.83	0.78	0.76	0.73	0.69	0.64	0.58	0.51

Simulation from Unit Root Model

- Evidence is consistent with a unit root in the debt/output ratio.
- Simulate under the null that there is unit root in the debt/output ratio:

$$
\begin{aligned}
v_{t+1} & =v_{t}+\Delta v_{t+1} \\
\Delta v_{t+1} & =\psi_{0}+\psi_{1} \Delta v_{t}+\epsilon_{t+1}^{v} \\
\tilde{r}_{t+1} & =r_{0}+\epsilon_{t+1}^{r}
\end{aligned}
$$

- Estimate $\left(\epsilon_{t+1}^{v}, \epsilon_{t+1}^{r}\right)$ in historical data
- Draw 10,000 samples of length N with replacement from observed $\left(\epsilon_{t+1}^{v}, \epsilon_{t+1}^{r}\right)$
- There is no contribution from return/surplus predictability (fundamentals): $b_{T}^{s}=b_{T}^{r}=0=1-\phi_{T}$ at all horizons T.
- Simulate and estimate predictability regressions on simulated data
- Evaluate accuracy of small-sample bias correction

Variance Decomposition of v_{t} under Unit Root

- The average slope coefficients obtained from the unit root model imply variance decomposition close to our point estimates in the case without bias correction.
- Spurious evidence of mean reversion that creates a large role for fundamentals over longer horizons, in cases where there is no mean-reversion.

The mean of the small-sample slope coefficients in red; the long-sample slope coefficients in blue

CBO Projections vs. Realized

$$
v_{t}=\mathbb{F}_{t} \sum_{j=1}^{10}\left(s_{t+j}-\widetilde{r}_{t+j}\right)+\mathbb{F}_{t} v_{t+10}
$$

Decomposition of the log debt/output ratio v_{t} into components due to CBO-projected (and realized) future government surpluses $\sum_{j=1}^{T} s_{t+j}$, future discount rates $\sum_{j=1}^{T} \widetilde{r}_{t+k}$, for $T=10$.

CBO Projections vs. Realized

$$
v_{t}=\mathbb{F}_{t} \sum_{j=1}^{10}\left(s_{t+j}-\widetilde{r}_{t+j}\right)+\mathbb{F}_{t} v_{t+10}
$$

Decomposition of the log debt/output ratio v_{t} into components due to CBO-projected (and realized) future government surpluses $\sum_{j=1}^{T} s_{t+j}$, future discount rates $\sum_{j=1}^{T} \widetilde{r}_{t+k}$, for $T=10$. We also report future real growth

$$
\sum_{j=1}^{T} \tilde{x}_{t+k}
$$

Related Literature

- Statistical issues with persistent predictors (Nelson and Kim, 1993; Hamilton, 1994; Stambaugh, 1999; Lewellen, 2004; Torous, Valkanov, and Yan, 2004; Campbell and Yogo, 2006; Boudoukh, Israel, and Richardson, 2020; Bauer and Hamilton, 2017)
- Fiscal policy and budget constraints: Hansen, Roberds, and Sargent (1991); Hamilton and Flavin (1986); Trehan and Walsh (1988, 1991); Bohn (1998, 2007); D'Erasmo, Mendoza and Zhang (2016); Blanchard (2019); Barro (2020), Reis (2020), Brunnermeier, Merkel and Sannikov (2020), Jiang, Lustig, Van Nieuwerburgh and Xiaolan (2019, 2020, 2021a,b,c).
- Safe asset supply: Gourinchas and Rey (2007); Caballero, Farhi, and Gourinchas (2008); Caballero and Krishnamurthy (2009); Maggiori (2007); He, Krishnamurthy, and Milbradt (2018); Jiang, Krishnamurthy and Lustig (2018, 2019).

Bauer, M. D., and J. D. Hamilton, 2017, "Robust Bond Risk Premia," Review of Financial Studies, 31(2), 399-448.
Berndt, A., H. Lustig, and Ş. Yeltekin, 2012, "How Does the US Government Finance Fiscal Shocks?," American Economic Journal: Macroeconomics, 4(1), 69-104.
Binsbergen, J. H. V., and R. S. J. Koijen, 2010, "Predictive Regressions: A Present-Value Approach," Journal of Finance, 65(4), 1439-1471.
Blanchard, O., 2019, "Public Debt and Low Interest Rates," American Economic Review, 109(4), 1197-1229.
Bohn, H., 1998, "The Behavior of US Public Debt and Deficits," Quarterly Journal of Economics, 113(3), 949-963.
Boudoukh, J., R. Israel, and M. P. Richardson, 2020, "Biases in Long-Horizon Predictive Regressions," NBER Working Paper 27410.
Campbell, J. Y., and R. J. Shiller, 1991, "Yield Spreads and Interest Rate Movements: A Bird's Eye View," Review of Economic Studies, 58, 495-514.
Campbell, J. Y., and S. B. Thompson, 2007, "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Review of Financial Studies, 21(4), 1509-1531.
Campbell, J. Y., and M. Yogo, 2006, "Efficient Tests of Stock Return Predictability," Journal of Financial Economics, 81, 27-60.

Cochrane, J. H., 2008, "The Dog That Did Not Bark: A Defense of Return Predictability," Review of Financial Studies, 21(4), 1533-1575.
—_ , 2011, "Presidential Address: Discount Rates," Journal of Finance, 66(4), 1047-1108.
—— , 2020, "The Surplus Process," Accessed: 2020-10-24.
Cochrane, J. H., 2021a, "The Fiscal Roots of Inflation," Review of Economic Dynamics.
—_, 2021b, "A Fiscal Theory of Monetary Policy with Partially-Repaid Long-Term Debt," Review of Economic Dynamics.
Cochrane, J. H., and M. Piazzesi, 2005, "Bond Risk Premia," American Economic Review, 95(1), 138-160.
Fama, E. F., and R. H. Bliss, 1987, "The Information in Long-Maturity Forward Rates," American Economic Review, 77(4), 680-692.
Furman, J., and L. Summers, 2020, "A Reconsideration of Fiscal Policy in the Era of Low Interest Rates," https://www.brookings.edu/wp-content/uploads/2020/11/ furman-summers-fiscal-reconsideration-discussion-draft.pdf, Accessed: 2020-12-27.
Golez, B., and P. Koudijs, 2018, "Four Centuries of Return Predictability," Journal of Financial Economics, 127(2), 248-263.
Gourinchas, and Rey, 2007, "International Financial Adjustment," Journal of Political Economy, 115(4), 665-703.

Goyal, A., and I. Welch, 2005, "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, 21(4), 1455-1508.
Hamilton, J. D., 1994, Time Series Analysis. Princeton University Press, Princeton, NY.
Hansen, L. P., and R. Jagannathan, 1991, "Restrictions on Intertemporal Marginal Rates of Substitution Implied by Asset Returns," Journal of Political Economy, 99, 225-262.
Jordà, Ò., 2005, "Estimation and Inference of Impulse Responses by Local Projections," American Economic Review, 95(1), 161-182.
LeRoy, S. F., and R. D. Porter, 1981, "The Present-Value Relation: Tests Based on Implied Variance Bounds," Econometrica, 49(3), 555-574.
Lettau, M., and S. Van Nieuwerburgh, 2008, "Reconciling the Return Predictability Evidence," Review of Financial Studies, 21(4), 1607-1652.
Lewellen, J., 2004, "Predicting Returns with Financial Ratios," Journal of Financial Economics, 74(2), 209-235.
Ludvigson, S. C., and S. Ng, 2009, "Macro Factors in Bond Risk Premia," Review of Financial Studies, 22(12), 5027-5067.
Nelson, C. R., and M. J. Kim, 1993, "Predictable Stock Returns: The Role of Small Sample Bias," Journal of Finance, 48(2), 641-661.
Shiller, R. J., 1981, "Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends?," American Economic Review, 71, 421-436.

Stambaugh, R. F., 1999, "Predictive Regressions," Journal of Financial Economics, 54, 375-421.

Torous, W., R. Valkanov, and S. Yan, 2004, "On Predicting Stock Returns with Nearly Integrated Explanatory Variables," The Journal of Business, 77(4), 937-966.

