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Abstract
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less aggressive traders surround an investor, she trades more aggressively. However,
this strategic reaction is not nearly as strong as the classic view. Our estimates suggest
that when a group of investors changes its behavior, the response of other investors
only counteracts half of the direct impact. This result implies that the rise in passive
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1 Introduction

What happens to equilibrium prices when a subset of investors changes its behavior? For

example, what are the implications of investors switching to passive strategies, which has

occurred on a large scale over the last few decades?1 Answering such questions relies crucially

on how other investors react to changes. In the standard view that “financial markets are

fiercely competitive,” the answer is simple: nothing happens, because other investors pick

up any slack left by those changing their behavior.2 Casually said: if you stop looking for

$20 bills on the floor, someone else will replace you. This paper proposes a framework to

quantify these strategic responses, combining information from prices and portfolio positions.

We implement the framework for the U.S. stock market and study its implications for the

rise of passive investing.

We find that investors react to the behavior of others in the market: when an investor

is surrounded by less aggressive traders—that is, with a lower price elasticity of demand—

she trades more aggressively. While this reaction mitigates the equilibrium consequences

of changes in individual behavior, it is not nearly as strong as in the standard view of

“competitive financial markets.” Our estimates suggest that the other investors’ response

reduces the impact of an increase in passive investing by half. An increase as large as the

one observed over the last 20 years leads to substantially more inelastic aggregate demand

curves for individual stocks, by 15%.

To get to these answers, we proceed in three steps. Intuitively and in line with many

theories, we first formalize the degree of strategic response between investors: how much does

my demand elasticity respond to the elasticity of others? When investors compete strongly

for trading opportunities, their strategies respond more to how others are trading. Second,
1For example, the ICI factbook (ICI, 2020) reports that the total assets of passive mutual funds in the

U.S. have increased from $11bn to $2.8tn between 1993 and 2020.
2In his discussion of Fama’s work on efficient markets, Cochrane (2013) emphasizes how intensely financial

market participants look for investment opportunities: “other fields are not so ruthlessly competitive as
financial markets.” Thaler (2015) also discusses the common view among economists that even if investors
blunder, prices fix themselves in equilibrium, what he calls the “individual handwave argument.”
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we provide a framework to quantify this competition in strategies and its implications for

prices. We write down a demand system (à la Koijen and Yogo (2019)) where not only prices

but also demand elasticities are the equilibrium result of investors’ interactions. Third, we

estimate the model using detailed portfolio positions of institutional investors in the U.S.

stock market. We quantify the impact of a rise in passive investing and decompose the

sources of evolution in demand for individual stocks.

Why is the degree of strategic response so central to financial markets? A more elastic

demand curve implies more aggressive trading: the investor increases their position a lot

when the asset is cheap. In standard price theory, only a consumer’s preferences determine

her demand elasticity; your demand for apples depends on how you trade off money and

apples. In contrast, an investor’s choice of elasticity in financial markets also depends on the

behavior of other investors. If others are not trading aggressively, investment opportunities

arise, and you have more incentives to trade aggressively. In the idealized view where markets

are fiercely competitive, and there is always somebody on the lookout for good deals, this

response is so strong that it compensates for any initial change in investor behavior. In prac-

tice, many aspects limit the strength of this reaction. Changing your strategy might require

new information to identify the trades (Grossman and Stiglitz, 1980), overcoming contrac-

tual frictions (e.g. investment mandates) that limit flexibility in setting trading strategies,

having incentives to maximize risk-adjusted returns (Chevalier and Ellison, 1997), or having

high cognitive sophistication (Eyster, Rabin, and Vayanos, 2019). More generally, investors

face limits to arbitrage (Shleifer and Vishny, 1997). Finally, while the issue of how investors

compete in setting their trading strategies is distinct from whether there is perfect competi-

tion for the asset (price-taking behavior), market power also weakens the degree of strategic

response (Kyle, 1989).3

We entertain all of these mechanisms by taking a semi-structural approach: investors

follow exogenous but flexible investment strategies, and the market must be in equilibrium.
3Going back to Kreps and Scheinkman (1983), it is understood that price-taking is not the only aspect

shaping competition.
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We assume that each investor’s demand elasticity combines an investor-specific component

and a reaction to the aggregate demand elasticity prevalent in the market. The degree of

strategic response is the intensity of this reaction. An equilibrium combines two layers.

First, the elasticities of all investors must be consistent with each other: the average of all

investor elasticities must be equal to the aggregate elasticity. Second, the asset price is such

that the sum of all demand curves evaluated at this price equals the supply of the asset.

The simplicity of this framework does not impede its richness. We show that all of the

aforementioned foundations for investor competition map to the structure of our model.

What happens when a group of investors becomes passive? Their investment strategy

turns irresponsive to the price of the asset; hence their demand elasticity goes to zero. This

change pushes the aggregate elasticity down, prompting other investors to respond, poten-

tially compensating for the direct effect. When the strategic response is strongest, this

reaction completely offsets the direct effect, and the equilibrium market elasticity remains

unchanged. This situation corresponds to the ideal of “fiercely competitive financial markets.”

On the other extreme, if investors do not react, the elasticity provided by the traders who

became passive is just lost. More generally, we derive a simple formula for the pass-through

of a rise in passive-investing into aggregate elasticities as a function of the degree of strategic

response.

We parametrize the demand system in the style of Koijen and Yogo (2019) to take it

to the data. In particular, the specification entertains rich heterogeneity across investors.

However, unlike in Koijen and Yogo (2019), one cannot independently estimate the demand

of each institution. Because of the strategic response, the demand elasticities of all investors

are intertwined and must be solved simultaneously. This elasticity equilibrium creates three

challenges that we overcome.

First, the interaction between investors through their elasticity decisions introduces a

reflection problem (Manski, 1993): a market with high elasticity could result from either

high individual elasticities or strong positive spillovers. The cross-section of stocks provides
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a solution to this issue: the same investor faces a different mix of competing investors for each

stock, therefore a different aggregate demand elasticity. This variation allows us to isolate

the spillover from the individual-specific component of elasticity. We face a chicken-and-egg

question. We need to know the elasticities of other investors to implement this comparison.

But estimating these investors’ elasticities requires knowing the initial investor’s elasticity in

the first place. We derive and verify conditions on the graph of investor-stock connections

under which these problems can be solved simultaneously.

Second, both the price and the aggregate elasticity are equilibrium quantities and there-

fore depend on portfolio decisions. We construct an instrument for each of these variables

using variations in investment universe across investors. Stocks that more investors can

buy naturally have more money chasing them and a higher price, an instrument introduced

in Koijen and Yogo (2019). For the aggregate elasticity, we introduce a new model-based

instrument combining the variation in investment universe with the estimated individual

component of elasticities.

Third, the inclusion of rich investor heterogeneity, the need to solve for an elasticity equi-

librium, and the presence of a model-based instrument all concur to a seemingly intractable

estimation. However, we develop a computationally efficient algorithm that estimates the

model.

Our estimates suggest a substantial amount of strategic response. If the aggregate elas-

ticity for a stock increases by 1, an individual investor decreases her elasticity of demand by

2.2. We confirm the robustness of this finding in a battery of specifications: alternative in-

strument construction, more weights on large investors, additional controls, etc. Across these

specifications, the estimated strategic response remains between 1.9 and 2.5. This compe-

tition among investors stabilizes the levels of aggregate elasticity. Intuitively, when a very

aggressive investor trades a specific stock, other investors in this stock adjust by becoming

less aggressive. This force implies about 50% less cross-sectional variation in elasticity across

stocks than estimates that ignore competitive interactions, highlighting the importance of
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these interactions.

We use these estimates to assess the impact of a rise in passive investing. To do so, we

ask how equilibrium elasticities change when a fraction of investors exogenously becomes

passive. We obtain a simple formula for the pass-through of a change in the fraction of

active investors to the aggregate elasticity. This pass-through solely depends on the degree

of strategic response and the initial fraction of active investors. It is decreasing in both

quantities. Empirically, we find this pass-through to be about 0.4. A little less than half of

a change in the fraction of active investors translates into a reduction in demand elasticity.

Given the 30% decrease in active investing over the last 20 years, this effect yields a reduction

in elasticities of 13%. This is a sizable change: in the context of many models, it would lead

to less informative and more volatile prices, as well as more price impact — we confirm these

connections empirically in the cross-section. Again, this prediction highlights that while the

effects of competition in strategies are strong, the stock market is far from the standard

view. When “financial markets are competitive”, the pass-through is 0, in which case a

rise in passive investing has no impact. On the other hand, without strategic effects, the

pass-through is 1, leading to a 30% decrease in elasticity.

A potential concern is that the model ignores some forces to maintain tractability. For

example, some theories predict that the strategic response depends on who is switching to

passive investing beyond their initial elasticity. Or, competition could occur not only through

existing investors changing their strategies but also through the entry or exit of new investors.

To assess the presence of these other mechanisms, we regress changes in aggregate elasticity

on changes in passive investing at the stock level, zooming in on several sources of variation.

Confirming our model estimate, we find a pass-through of about 0.4 irrespective of whether

we include stock or date fixed effects or even instrumenting for passive investing using index

inclusions.

The model also provides an account of the actual evolution of the demand for stocks

over the last 20 years. The entire cross-sectional distribution of stock-level elasticity de-
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creased during that period by 40%. Interestingly, the model attributes this drop equally to

two investor-specific sources of change. First, the fraction of passive investors has increased

steadily over our sample. Second, the investor-specific component of the elasticity of ac-

tive investors has also experienced significant changes: initially increasing until 2007, then

trending downwards, and overall dropping. This second dimension is interesting because it

suggests a role for market-wide shifts in individual strategies beyond the rise of passive in-

vesting, such as developments in computing power and access to big data.4 However, another

aspect played an important role: active investors also increased their equilibrium elasticity

in response to the broad decrease in aggregate elasticities. In a counterfactual exercise in

which we shut down the strategic responses, we find that elasticities would have decreased

twice as much. In contrast, they would have barely moved with strong strategic responses.

Taken together, our results highlight the importance of a more nuanced approach to how

investors compete in financial markets. No, it is not the case that “financial markets are

fiercely competitive” and that all shocks are fully absorbed by other investors. But also,

no, it does not mean that investors do not interact at all. This framework is a first step

towards quantifying the degree of strategic response and its implications. Our estimates

suggest that these interactions played an essential role in shaping the response to the rise

of passive investment. This strategic response is likely important for many other questions

about investor demand; we sketch the implications of our framework beyond the rise in

passive investing. What happens when a large set of financial institutions must change their

trading because of new regulations? What happens when some sophisticated specialized

investors get in financial trouble?

Contribution to the existing literature. The idea that investors compete with each

other when choosing their strategies has a long history in finance. Grossman and Stiglitz

(1980) first formalize the notion of competition for information between investors and show
4Farboodi and Veldkamp (2020) develop a theory of the effect of growth in financial data technology that

upends common wisdom.
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it does not lead to informationally efficient markets.5 Kyle (1989) highlights how market

power also creates interaction among investors. These seminal contributions have led to a

large theoretical literature pointing out rich ways in which investors react to each other and

choose their trading strategies. In the context of the rise of passive investing Subrahmanyam

(1991) is an early contribution highlighting liquidity concerns. More recent work includes

Bond and Garćıa (2018), Malikov (2019), Lee (2020), Buss and Sundaresan (2020), and

Kacperczyk, Nosal, and Sundaresan (2020). Gârleanu and Pedersen (2018) and Gârleanu

and Pedersen (2021) focus on the interaction between the market for asset managers and the

market for assets. Farboodi and Veldkamp (2020) focus on the choice between information

about fundamentals or about demand in the context of the rise in big data. However, with the

exception of Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016), these theories are rarely

confronted to portfolio data. Our new approach, summarizing strategic responses through

choices of demand elasticity, allows us to bring the theory to the data.

We contribute to a recent literature on estimating demand systems accounting for the

large heterogeneity in portfolio holdings, started by Koijen and Yogo (2019). Koijen et al.

(2021), Koijen and Yogo (2020), Koijen, Richmond, and Yogo (2020), and Jiang, Richmond,

and Zhang (2020) also apply this approach. Balasubramaniam, Campbell, Ramadorai, and

Ranish (2021) estimate a factor model of portfolio holdings. Dou, Kogan, and Wu (2020)

study how mutual funds change their portfolios in response to common fund flows. Gabaix

and Koijen (2020) estimate the aggregate demand for stocks. Our key innovation on that

front is to incorporate strategic interactions between investors, a long-theorized feature we

find to be quantitatively important.

More broadly our paper relates to a wider literature studying the relation between port-

folio quantities and asset prices. De Long et al. (1990) argue that noise trader shocks

can affect prices. These ideas have found applications across multiple asset classes: stocks

(Shleifer (1986), Warther (1995)), government bonds (Vayanos and Vila (2021), Greenwood
5Coles, Heath, and Ringgenberg (2020) show that an increase in passive investing does not affect price

informativeness in this baseline model.
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and Vayanos (2014), Haddad and Sraer (2020)), options (Gârleanu, Pedersen, and Poteshman

(2009)), currency markets (Gabaix and Maggiori (2015), Greenwood et al. (2019), Gourin-

chas, Ray, and Vayanos (2019)), or corporate bonds (Haddad, Moreira, and Muir (2021)).

While our estimates concentrate on the stock market, we bring to the forefront the importance

of strategic interactions between investors, which likely also matter in other markets.

Finally our results provide new insights in the debate on the consequences of the long-term

rise in passive investing. French (2008) and Stambaugh (2014) provide empirical evidence of

a shift towards passive investing. Zooming in on portfolios, we uncover how passive investing

is altering how all investors trade and therefore its equilibrium implications. Other work

focuses on quasi-natural experiments around index or ETF inclusion such as Chang, Hong,

and Liskovich (2014) or Ben-David, Franzoni, and Moussawi (2018). Sammon (2021) studies

the response of stock prices around earnings announcements. Bai, Philippon, and Savov

(2016), Dávila and Parlatore (2018), and Farboodi et al. (2021) document long term trends

in price informativeness.

2 An Equilibrium Model of Financial Markets with In-

vestor Competition

We present our framework of investor interactions in financial markets. The key idea is that

there are two layers to an equilibrium in financial markets. First, the price is such that the

sum of investor demands equals the supply of the assets. Second, investors compete with

each other in setting their strategies: they choose how aggressively they trade as a function

of how others trade. This aggressiveness is measured by their demand elasticity. First, we

introduce the two layers, then we highlight the implications of our framework for the rise of

passive investing. Table 1 summarizes the model.
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Table 1. The 2-layer model of investor competition.

Individual Decision Equilibrium Condition

Demand di = di − Ei × (p− p̄)
∫
Di(p) = S

Elasticity Ei = E i − χ× Eagg
∫
EiDi/S = Eagg

2.1 First layer: the asset price clears the market given demand

curves

For the sake of simplicity, we focus on the case of a single asset in fixed supply S and a

continuum of investors indexed by i. We generalize to multiple assets when moving to the

data in Section 4. In an equilibrium, each investor decides how much they buy as a function

of the price P of the asset: a demand curve Di(P ), which we can log linearize around a

baseline value for the price P̄ :

di = di − Ei × (p− p̄) , (1)

where lowercase letters represent log values.6 The elasticity of this demand curve, Ei, deter-

mines how aggressive the investor is.7 An investor with Ei = 0 does not react to changes in

prices, while an investor with large Ei increases her position a lot when the asset is cheap.

Beyond the price, other aspects can also affect the choice of positions. For example, an

investor could have a preference for environmental, social, and governance (ESG) investing.

We collect these other aspects inside the constant di; the empirical analysis will be more

flexible about modeling di.

Investors’ elasticities play an important role in the determination of equilibrium prices.
6The assumption of demand curves does not necessarily imply price-taking. For example, in the rational

expectation equilibrium with imperfect competition of Kyle (1989), investors also post demand curves.
7Similarly Gabaix and Koijen (2020) consider log-linear demand curves around a reference price level.
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The aggregate demand curve is Dagg(P ) =
∫
Di(P ), and the equilibrium price solves

Dagg(P
∗) = S. Aggregate demand has elasticity

Eagg =
∫
EiDi∫
Di

. (2)

The (holdings-weighted) average of individual elasticities measures how strongly aggregate

demand for the asset responds to the price. This aggregate elasticity shapes the behavior of

the equilibrium price. If investors are very aggressive, aggregate demand is perfectly elastic,

Eagg → ∞, and prices are pinned down at a fixed level. In such a situation, changes in

individual investor characteristics di or in supply S do not affect the price. This is what people

sometimes describe as “efficient markets”: any deviation of the price from a fundamental

value is immediately traded away by aggressive investors. On the other hand, when demand

is more inelastic, small changes in the market structure can have a large effect on prices

because investors are unwilling to change their positions.

For example, if elasticities are constant, a small uniform change ∆d to the demand of all

investors results in a price change of

∆p = E−1agg ×∆d. (3)

If all investors want to increase the size of their position by one percent, the price increases

by the multiplier Magg = E−1agg percent. Consequently, more inelastic markets experience

larger price variation due to changing investor demands, and are therefore more volatile.8

A change in supply would have the opposite effect on the price with a multiplier −Magg.

More fleshed-out models such as the ones we present in Section 3 also relate the aggregate

elasticity to other equilibrium properties such as price informativeness, liquidity, or limits to

arbitrage. We confirm these relations empirically in Section 5.3.2.
8See also Gabaix and Koijen (2020) for a discussion of the role of the elasticity of aggregate demand in

financial markets.
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2.2 Second layer: investors set their demand elasticity in response

to others

In standard price theory, the elasticity of demand reflects only an individual’s preference

for a good. In particular, it does not depend on the decisions of other market participants.

When choosing how many apples to put in your shopping cart, it does not matter what other

shoppers are doing beyond their effect on the price level. However, in financial markets,

it matters why the price is moving and consequently demand elasticities are not fixed.9

Investors compete for trading opportunities. If many investors trade aggressively, fewer good

deals are available; therefore, there are also fewer incentives to trade with a high elasticity.

This relation adds a second layer to the equilibrium, which captures how investors com-

pete when choosing their strategies. At the individual level, the elasticity responds to the

aggregate demand elasticity. But conversely, the aggregate demand elasticity is an average

of individual elasticities. Formally, we represent this feedback by endogenizing individual

demand elasticities as a function of the aggregate demand elasticity:

Ei = E i − χ Eagg. (4)

The parameter χ controls the strength of the response to the aggregate elasticity; it measures

the extent of strategic substitution in demand elasticities.10 E i is a baseline level of elasticity

reflecting the investor’s own preferences for the asset, for example shaped by her risk aversion

or her beliefs about the payoffs. Together, the individual decision equation (2) and the

aggregation condition of equation (4) pin down the equilibrium of elasticities.

We refer to the parameter χ as the degree of strategic response. Large values of χ capture

the narrative associated with the view that “financial markets are fiercely competitive.” If

a group of sophisticated investors goes away, other investors pick up the slack by trading
9A similar phenomenon arises in auction settings: a bidder’s optimal bidding strategy often responds to

the strategies of other participants in the auction.
10We consider strategic substitutes and complements in the sense of Bulow, Geanakoplos, and Klemperer

(1985) and defined in chapter 4 of Veldkamp (2011).
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more aggressively. In the extreme case where χ goes to infinity, the strategic response is so

strong that the equilibrium aggregate elasticity Eagg is pinned down at a fixed level. Changes

in individual investor behavior or the composition of investors do not affect the aggregate

elasticity.

On the other hand, when χ = 0, individual investors do not respond to the aggregate

elasticity. We are back to standard price theory: each investor follows a strategy that is

independent of the actions of other investors. Under this view, if a group of sophisticated

investors goes bankrupt, nobody else steps in to take advantage of the opportunities that are

left untouched: the aggregate elasticity drops sharply.

The parameter χ offers a simple and flexible way to strategic interactions and their conse-

quences, consequences we highlight in the remainder of this section. We do not take a stand

on a specific microfoundation for the parameter χ. In many theories, demand elasticities

are a key feature of investors’ strategies and exhibit substitutability or complementarity; we

devote Section 3 to these theories.11 Rather than restricting ourselves to a specific founda-

tion — many of these theories are operating side by side — we measure strategic responses

directly from trading and portfolio data.

Next, we show how the degree of strategic response matters in several applications. First,

we study the effect of a rise in passive investing — our main empirical application. Second,

we show that understanding how institutions react to each other in setting their strategies

is crucial for intermediary asset pricing. Finally, Appendix Sections A.2 and A.3 consider

implications for the asymmetry of mispricing and the dynamics of limits to arbitrage.

2.3 The effect of a rise in passive investing

Our framework is useful to evaluate the effect of a rise in passive investing. Consider the

following thought experiment. We start from an economy with homogeneous investors who,
11Technically, other aspects of investor decisions may be the source of substitutability (e.g. information

acquisition or social interactions). However, because elasticities are directly related to these other decisions,
the substitutability manifests itself in the demand elasticity.
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in this initial equilibrium, have elasticity Ei = E0. The aggregate elasticity is therefore also

E0. What happens when a fraction 1 − α of these investors becomes passive, that is keep

the same holdings, but reduce their elasticity to zero? The degree of strategic response χ

determines the answer to this question.

The direct effect of this change is that now only a fraction α of investors contribute to the

aggregate elasticity. If we only consider this effect, the aggregate elasticity decreases to Eagg =

αEi (from the aggregation equation (2)). But the story does not end here; the remaining

active investors adjust their strategies. They change their own elasticity in response to the

aggregate: ∆Ei = −χ∆Eagg (from equation (4)). This response compensates the direct effect

when χ > 0. Each active investor responds again to the response of other active investors,

until they reach a new equilibrium.12 The new aggregate elasticity is:

ENEW = αE0︸︷︷︸
direct effect

+(1− α)E0
αχ

1 + αχ︸ ︷︷ ︸
strategic response

. (5)

When “financial markets are fiercely competitive,” χ is large and ENEW = E0, the aggregate

elasticity is unchanged. The drop in elasticity due to the investors that became passive is

exactly compensated by a greater elasticity of the remaining active investors. In contrast,

when investors are insensitive to market conditions, χ close to zero, only the direct effect

operates, and the elasticity declines by a factor α.

What does this imply quantitatively? In the estimation of Section 4, we find a level of

competition χ of 2. Over the last 20 years, the fraction of active investors has decreased by

30%, so we set α = 70%. This implies that the initial elasticity is multiplied by a factor of

(2 + 1)/(2 + 1/(70%)) = 0.875. The rise of passive investing leads to a substantial drop in

elasticity of 12.5%. This is about half of the direct effect that would have led to a decrease of

30%. However, it is still much more than the zero predicted by the idealized view of “fiercely

competitive financial markets.”
12Formally, we do not model this tâtonnement, and instead focus directly on equilibria. We present details

of the calculation in Appendix Section A.1.
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In Section 4, we fully specify our framework to account for heterogeneity across investors

and stocks, and estimate it using holdings data.13 This allows us to revisit the question of

the rise in passive investing in the context of a realistic quantitative model in Section 5.1.

2.4 Intermediary asset pricing

How do markets change when some financial institutions get distressed or when they are more

tightly regulated? As these institutions trade less aggressively they provide less elasticity to

the market and we expect more unstable prices. Two aspects shape this response: how

large is the direct shock to the institutions, but also how other competing investors respond.

Consider how the aggregate elasticity responds to a combination of shocks to individual

elasticities {∆E i}i; for example, only the affected institutions receive a negative shock to

their elasticity. For simplicity, we assume that the price is at its baseline, p = p̄, and leave

the general case to Appendix A.14 We show that the change in the aggregate elasticity is

∆Eagg =
1

1 + χ
E[∆E i], (6)

where E[.] denote the demand-weighted population average.15 The change in aggregate elas-

ticity combines the average direct elasticity shock E[∆E i] and a mitigating factor due to the

strategic response 1/(1 + χ). With strong responses, χ → ∞, the shock to some investors

has no effect on the aggregate elasticity. This is the view of those arguing that intermedi-

aries cannot matter for asset prices. However, for lower values of χ, the direct effect is not

mitigated. Theoretical models centered on intermediaries often assume χ = 0 (e.g He and

Krishnamurthy (2013) and Brunnermeier and Sannikov (2013)).

As such, when analyzing how the financial health of intermediaries matters for asset
13Appendix Section A.4 shows that when χ differs across investors, what matters for the rise of passive

investing is the demand-weighted average value among active investors.
14Unlike in the precedent calculation, we assume that there are no passive investors.
15Formally this corresponds to

E[xi] =

∫
xi

Di

S
.
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pricing and the economy, one must also take into account how other investors compete with

them. Consistent with this idea, Haddad and Muir (2021) show that in markets that are

more sophisticated and hence with less intense competition, periods of distress in the financial

sector are associated with stronger movements in risk premium. Eisfeldt, Lustig, and Zhang

(2017) also emphasize this role of investor competition in markets for complex assets such

as mortgage-backed securities. Siriwardane, Sunderam, and Wallen (2021) document many

situations in which shocks to one intermediary are imperfectly compensated by the reaction

of other intermediaries.16

3 Why Are Financial Markets Not “Fiercely Compet-

itive?”

In the idealized view of financial markets, investors are constantly on the lookout for good

opportunities, and swiftly come in if another market participant steps down. This corre-

sponds to χ → +∞ in our framework. In practice, many forces limit this process of investor

competition. We discuss the most prominent ones in this section: costly information acqui-

sition, bounded rationality, liquidity, peer effects, and investment mandates. We show that

our 2-layer equilibrium model captures the main insights of these theories in a parsimonious

way.

3.1 Costly information acquisition

A basic idea of how investors compete with each other is that if some active investors exit the

market, there are more investment opportunities to take advantage of, and other investors go

after them by trading more aggressively. In practice, knowing that there are more investment

opportunities is not enough, investors have to evaluate them. The costs of this process of
16Other examples of large effects of intermediary health in specialized markets include Gabaix, Krishna-

murthy, and Vigneron (2007) and Siriwardane (2019).
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learning (information gathering, hiring analysts, etc.) naturally limit the ability to compete.

We formalize this intuition in a model in the style of Grossman and Stiglitz (1980) with

information acquisition as in Veldkamp (2011), and show it maps tightly to our two-layer

equilibrium.17 We focus here on the main results and leave details of the setting and deriva-

tions to Appendix B.

There is one period and one asset, and a continuum of agents indexed by i. Each agent

has CARA preferences with risk aversion ρi. The gross risk-free rate is 1, and the (random)

asset payoff is f . The asset is in noisy supply x̄ + x with x̄ an exogenous fixed parameter

and x ∼ N (0, σ2
x). Initially, each agent is endowed with an independent signal µi of the

fundamental f , distributed µi ∼ N (f, σ2
i ).18 Obtaining more precise signals is more costly.

Each agent can acquire a private signal ηi ∼ N (f, σ2
i,η) at monetary cost ci(σ−2i,η + σ−2i ), with

ci(.) a non-decreasing positive function.19 The signal being private implies in particular that

signal realizations are uncorrelated across agents conditional on the fundamental f .

Optimal asset demand is linear in the price: di = di − Eip.20 The slope of the demand

curve characterizes how aggressively an investor changes her portfolio when the price moves.

We find (Appendix B.3):

Ei =
1

ρi

(
σ−2i + σ−2iη

)
. (7)

Two elements shape the investor’s demand elasticity: her risk aversion and her private

information. An investor with more precise information about the asset is more confident in

her forecast of the asset returns, and therefore trades more aggressively. Looking ahead, we
17Bond and Garćıa (2018) and Malikov (2019) provide theoretical analyses of the rise of passive investing

in this family of theories.
18Following Veldkamp (2011), we assume agents start with a flat prior on f , hence their initial belief is

f ∼ N (µi, σ
2
i ).

19This parametrization is without loss of generality relative to a cost function that would only depend on
the acquired signal ση,i.

20For all of this subsection, we do a small abuse of notation: lowercase letters represent levels rather than
logarithms and Ei denotes the slope of the demand curve, rather than the elasticity stricto sensu. This
approach lends itself to the linearity of the CARA-Normal framework, but is less appealing for empirical
applications.
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can already see that constraints to the ability to change information acquisition will limit

the ability of the investor to change her elasticity and compete with others.

Before that, we show that the aggregate elasticity, Eagg =
∫
i
Eidi, is the appropriate notion

for how the collective actions of all investors shape the price. In equilibrium, the price follows

p = A+ f − E−1aggx, (8)

where A is a constant. The price responds one-to-one to the fundamental f , but is also

affected by noise trading x. The aggregate elasticity controls the impact of noise: if everybody

trades aggressively against abnormal price movements, noise traders cannot push the price

far away from fundamentals. In line with this intuition, a market with higher aggregate

elasticity also has less volatile returns (Var(f − p) = E−2aggσ
2
x) and more informative prices

(Var(f |p)−1 = E2
aggσ

−2
x ).

The strategic responses of investors to one another occur through information choices.

The aggregate elasticity impacts price dynamics, which in turns affect the incentives to

acquire information and trade in an elastic way. When choosing how much information to

acquire, investors trade off the cost of a more precise signal with the benefit of a more informed

trading strategy. The utility gain from precise information is proportional to knowledge of

the fundamental, which combines private information (corresponding to Ei) and information

learned from prices (corresponding to Eagg). Focusing on elasticities, this leads to the following

optimization problem:

max
Ei

1

2
log
(
ρiEi + E2

aggσ
−2
x

)
− ρici(ρiEi) (9)

This problem is the counterpart to equation (4): the choice of individual elasticity Ei depends

on the aggregate elasticity Eagg. To a first-order approximation, the degree of strategic

response is the sensitivity of the optimal individual elasticity to the aggregate elasticity:
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χ = −∂Ei/∂Eagg.21 In this model, the degree of strategic response χ is always positive. If

others acquire less information and become less aggressive, there are incentives to look for

information and step in to replace them. However, these forces only partially offset the initial

change, χ < ∞. In particular, costs to adjust information limit the ability to react and result

in lower χ. Formally, we show in Appendix B.5 that χ is decreasing in a form of curvature

of the information cost function, c′′i /c′2i .22

3.2 Other impediments to adjusting elasticity

For this first approach, we saw that the costs of adjusting information strategies limit the

ability of investors to compete with each other. Other practical reasons hinder flexibility in

setting a trading strategy, and bring χ down towards zero.

One such aspect is risk. Following an aggressive high-elasticity trading strategy entails

taking more extreme positions, and hence more risk. Risk itself is endogenous to the aggres-

siveness of other traders: in more efficient markets, prices are tightly related to fundamentals,

while without any active traders, prices are more sensitive to the whims of noise traders.23

Thus, it is unappealing to follow aggressive strategies exactly when they are most needed,

which limits the process of investor competition. In Appendix Section C.1, we present a

setting where investors do not make information choices but learn from prices. We show that

endogenous risk shapes strategic responses; for example when all risk is endogenous investors

do not interact, χ = 0, while otherwise there is a positive response.24

Another aspect is institutional. Many financial institutions face strong mandates from

their ultimate investors in terms of what strategies they are allowed to follow. While these

restrictions can be viewed as an optimal contract solving information asymmetry between
21The relation between Ei and Eagg is not linear in general. In Appendix B.4 we find a two-parameter

family of simple cost functions under which this relation is exactly linear as in equation (4). Each of the two
parameters maps in closed-form to the degree of strategic response χ and individual elasticity E0,i.

22Coles, Heath, and Ringgenberg (2020) show that full competition arises in the baseline setup of Grossman
and Stiglitz (1980) without adjustment costs.

23De Long et al. (1990) first highlighted the importance of endogenous risk for dynamic arbitrage.
24In the first case, the model coincides with that of the previous section when the information cost is

infinitely steep, c′′i /c′2i → ∞.

18



final investors and the asset manager, they are costly in terms of competition. Investment

mandates limit the ability of institutions to react to changes in the behavior of other investors,

pushing χ down relative to an unconstrained setting. Beber et al. (2018) show how explicit

mandates and constraints in active mutual funds prospectuses strongly limit their investment

opportunity set. Investment strategies of banks and insurance companies are also restricted,

this time by their regulatory framework (for example, Basel III capital regulation).

Similarly, asset managers might have different incentives than that of their investors which

pushes their decisions away from maximizing risk-adjusted returns. For example, Chevalier

and Ellison (1997) shows that flow-performance sensitivity distorts mutual funds’ investment

choices.

3.3 Bounded rationality

Strategic interactions between investors rely on their understanding of market structure.

For example, in the rational expectations equilibrium of Section 3.1, each investor knows

the strategies followed by everyone else. Practically, how would investors figure out other

people’s strategies? Both in our model and in the theories described above, investors only

need to know the aggregate elasticity Eagg, but not the actions of each of the other investors.

In the real world, institutions can track changes in investment styles directly (e.g. industries,

factors, arrival of activist investors) or through their impact on prices (e.g. price impact,

volatility, price informativeness). While this information is useful, it is still a leap to assume

investors can follow exactly the optimal policies in frictionless models.

First, the information available to investors about the aggregate elasticity might be im-

perfect.25 In such a setting the response to other investors is dampenened. For example,

assume an investor wants to react to aggregate elasticity with a coefficient χ0, but she only
25Imperfect information about other investors’ strategies is different from imperfect information about

fundamentals or noise traders.
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observes a noisy signal about Eagg. Then, her elasticity choice is

Ei = E i − χ0θ · Eagg + ε. (10)

Because the investor cannot separate the noise from the information about Eagg, she responds

to her signal with a Bayesian shrinkage factor 0 < θ < 1. The residual ε is due to the

noise in the signal. Appendix C.3 provides derivations and explicit expressions for these

quantities. The effective degree of strategic response is χ0θ and incorporates the baseline

strategic response χ0 with the dampening factor θ.

Second, investors have to be sophisticated enough to understand their strategy should

react to what other investors are doing. A recent strand of research considers equilibria in

which investors miss the actions of others (Eyster and Rabin (2005), Greenwood and Hanson

(2014), Eyster, Rabin, and Vayanos (2019), Bastianello and Fontanier (2021)). Neglecting

equilibrium forces can either amplify or mitigate the degree of strategic response. On the one

hand, investors could simply ignore how the elasticity choice of others affect their investment

opportunities. In this case, we will not observe any strategic response. On the other hand,

investors might understand the direct effect of changes in elasticity but fail to realize that

others react to those as well, a form of partial equilibrium thinking as in Bastianello and

Fontanier (2021). For example, all investors understand there is a rise in passive investing

but fail to realize that others will react by trading more aggressively. We include partial

equilibrium thinking into the calculation from Section 2.3 on the effect of a rise in passive

investing. We show in Appendix C.4 that the new aggregate elasticity becomes

EPET
NEW = αE0 + (1− α)χαE0. (11)

Because investors do not account for the response of others, they overreact to the initial

change in elasticity. With partial equilibrium thinking, the strategic response is stronger

than in the baseline (see equation (5)) by a factor 1 + αχ. This leads to a relatively higher
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final level of aggregate elasticity, bringing the economy closer to the idealized view of financial

markets.

3.4 Strategic complementarities

Finally, some forces generate strategic complementarity rather than substitutability, which

yields negative values of the parameter χ. In these situations, when some investors become

less aggressive, other investors also pull out of markets instead of replacing them.

One such case arises when investors worry about the price impact of their trades. In

Appendix Section C.2, we show that a model of market power in the style of Kyle (1989)

yields a negative value of χ.26 Specifically, the standard CARA elasticity becomes

Ei =
1

ρiσ2 + (Eagg − Ei)−1︸ ︷︷ ︸
λ−i

. (12)

The investor responds to the price based on her risk aversion and the risk of the asset,

ρiσ
2, and the slope of the residual demand curve for the asset, what Kyle (1989) calls λ−i.

When other investors are more price elastic, it enhances liquidity in the market. In turn,

this facilitates my ability to trade and I can be more responsive to prices. This type of

complementarity holds in a broader family of theories of liquidity such as Vayanos and Wang

(2007).

Strategic complementarities can also arise through social interactions. When investors

follow their peers, as in Hong, Kubik, and Stein (2004), changes in some investors are am-

plified by similar decisions from other investors.27 If I see others around me trade a stock

more aggressively, I also want to trade that stock more aggressively. This herding leads to

negative values of χ.
26We also show that the measure of price impact Kyle’s λ is closely related to the inverse of aggregate

elasticity.
27Hirshleifer (2020) more broadly emphasizes the importance of social interactions in finance.
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4 Estimating the Degree of Strategic Response

In this section, we estimate the degree of strategic response χ and demand elasticities in the

context of the U.S. stock market. First, we enrich our model to account for the heterogeneity

of stocks and investors. Then, we design and implement a new identification strategy for

demand estimation in the presence of strategic interactions.

4.1 Quantitative model

Individual decisions. In practice, agents invest in many assets. Therefore, an empirical

model must make sure that portfolio positions add up to total assets for each investor.

In addition, it should also account for the portfolio aspect of financial decisions, that is,

substitution across assets. Koijen and Yogo (2019) show that a logit framework satisfies

both of these requirements. We denote each security by the index k, the total assets of

an investor by Ai, and the portfolio share of investor i in security k by wik. Therefore

dik = log(wikAi) − pk. The framework of Koijen and Yogo (2019) corresponds to specifying

a log-linear model for relative portfolio shares wik/wi0 instead of the individual demand

directly, with index 0 being the outside asset.28 We follow this approach. For each investor,

we take as given total assets under management, Ai, and the investment universe, Ki, that

is, the set of assets they can invest in.

Second, we need to specify the baseline levels of demand and elasticity di and E i. We

assume that each of those combines potentially distinct sets of asset characteristics using

investor-specific coefficients. Going back to the setting of Section 3, an interpretation of this

assumption is that investors form priors on different assets based on their characteristics; for

example, characteristics could capture factor loadings. This corresponds to expressing the

baseline demand as dik = d0i+d′1iX
(d)
k + εik and the baseline elasticity as E ik = E0i+E ′1iX

(e)
k ,

where the two vectors of characteristics are X
(d)
k and X

(e)
k . We also account for asset-specific

changes in demand by including a shock εik in dik. For example, εik captures the private
28Appendix D.4 details the empirical definition of the outside asset.
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signal η and noise trading x of the model of Section 3.

Finally, we estimate the model separately each time period using information only from

the cross-section. Thus, we allow all quantities and parameters of the model to depend on

time. For ease of notation we drop the subscript t. Putting it all together, our model of

portfolio demand is29

log
wik

wi0

− pk = d0i + d′1iX
(d)
k − Eik pk + εik, (13)

Eik = E0i + E ′1iX
(e)
k − χ Eagg,k. (14)

Starting from the relative shares ωik = wik/wi0, the actual shares can be obtained by

wik =
ωik

1 +
∑

k∈Ki
ωik

, (15)

wi0 =
1

1 +
∑

k∈Ki
ωik

. (16)

Interestingly, the demand system of Koijen and Yogo (2019) is a special case of this frame-

work. In their model, demand elasticities are fixed structural parameters.30 This corresponds

to setting E1i = 0 and χ = 0. Therefore, their model implicitly assumes no strategic response.

Consequently, when some investors are removed from the markets, the other ones do not step

in with larger elasticities. This is the polar opposite from the standard view of “fiercely com-

petitive financial markets,” which corresponds to χ → ∞. Our framework lets us quantify

how close or far reality is from these two extremes.

Passive investors. We account separately for passive investors. By passive, we mean that

these are investors whose demand does not respond to prices. Index funds are a specific

example of such investors. Our notion is broader though, because it accommodates arbitrary
29To match equation (13) with equation (1), recall that: dik = log Aiwik

Pk
. Then dik = d0i + d′1iXk +

log(Ai) + log(w0i) + εik.
30Technically in the logit model the demand elasticity is 1− (1−wik)(1− Eik). For values of wik that are

small relative to one, as in the data, this expression is close to Eik. Hence we refer to Eik as the demand
elasticity throughout the paper.
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fixed portfolios. To represent such behavior, we simply replace equation (14) by Eik = 0.

Separating out these investors is important, not only because of their low level of elasticity,

but also because they do not respond to aggregate trading conditions. We denote the set

of active investors for asset k by Activek and the fraction of asset k held by this group of

investors as |Activek|.

Equilibrium prices and elasticities. Going from individual decisions to an equilibrium

relies on market clearing. As in the model of Section 2, two equilibrium objects play a

role in individual decisions: prices, pk, and aggregate elasticities, Eagg,k. The corresponding

equilibrium conditions are

∑
i

wikAi = Pk, ∀k, (17)

∑
i

wikAi

Pk

Eik = Eagg,k, ∀k. (18)

We normalize the number of shares available to 1 to obtain the market-clearing condition for

assets, equation (17). Said otherwise, pk denotes the log market capitalization.

4.2 Data

We estimate the model for the U.S. stock market. We obtain stock-level data from CRSP:

price, dividends, and shares outstanding. We merge the CRSP file with COMPUSTAT for

balance sheet information and compute additional stock-level characteristics: book equity,

profitability, and investment.

We obtain portfolio holdings data from the 13F filings to the SEC from 2001 to 2020.

We build the dataset from the SEC EDGAR website following the method of Backus, Con-

lon, and Sinkinson (2019, 2020). The SEC requires that every institution with more than

$100m of assets under management files a quarterly report of their stock positions. We find

that collectively the holdings reported in the 13F account for 80% of the total stock mar-
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ket capitalization. We follow Koijen and Yogo (2019) to construct the final panel dataset.

Appendix D provides additional details.

4.3 Identification

To estimate the model described above we have to overcome three difficulties: (i) the classic

problem of endogeneity in demand estimation; (ii) a reflection problem induced by the inter-

actions between investors; and (iii) how to implement the estimation given that one of the

“regressors,” the aggregate elasticity, is unknown.

4.3.1 Identifying demand

Combining equation (13) and (14), the model is similar to a regression equation:

log
wik

wi0

− pk = d0i + d′1itX
(d)
k −

(
E0i + E ′1iX

(e)
k − χ Eagg,k

)
pk + εik. (19)

The parameters are d0i, d1i, E0i, E1i, and χ. There are two challenges to identify these pa-

rameters: residual demand εik is unobservable and aggregate elasticities Eagg,k are themselves

functions of E i and wik as expressed in the equilibrium condition (18). We make identification

assumptions to solve these issues.

As a motivation, consider the simplest possible assumption that takes residual demand

as exogenous to all other variables to get the moment condition

E
[
εik|X(d)

k , X
(e)
k , pk, Eagg,k

]
= 0. (20)

Then, we could estimate (19) using ordinary least squares. The independence of εik from

Xk is naturally motivated by taking the supply of assets as exogenous, as in endowment

economies (Lucas, 1978). Furthermore, the independence from pk and Eagg,k relies on the

logic that residual demands do not matter for equilibrium outcomes because they “cancel

out” in the aggregate. This rules out both the presence of non-atomistic investors and
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correlated demand shocks — see the equilibrium conditions in equations (17) and (18). Both

of these last assumptions are not likely to hold for institutional investors. Therefore we relax

these assumptions and propose an alternative identification strategy.

We assume that the variation in total assets and the investment universe is exogenous to

the residual demand, an assumption shared with Koijen and Yogo (2019). They argue that

the investment universe is often determined by mandates, which are predetermined rules on

which assets can be held. Similarly assets under management (AUM) are also predetermined.

Building on this we construct instruments for equilibrium outcomes pk and Eagg,k. The

instrument for the price of asset k follows Koijen and Yogo (2019); define

p̂k,i = log

(∑
j 6=i

Aj

1k∈Kj

|Kj|

)
, (21)

where 1k∈Kj
is an indicator variable of when stock k is in investor j investment universe. This

instrument corresponds to how much money would flow to stock k if all investors other than

i had an equal-weighted portfolio.31 Variation in the instrument comes from variation across

investors’ investment universes. For example, a stock with large investors has more money

flowing towards it. Given our assumption of downward-sloping demand for stocks, a larger

exogenous demand generates higher prices that are uncorrelated with residual demand.

In addition to the price of each asset, our setting includes another equilibrium variable,

the aggregate elasticity Eagg,k, for which we develop a new instrument:

Êagg,k =
1

1 + χ|Activek|

∑
j∈Activek

Aj/|Kj| · 1k∈Kj
· E jk∑

j∈Activek
Aj/|Kj| · 1k∈Kj

. (22)

This instrument is the solution to the elasticity equilibrium defined by equations (14) and

(18), where we have replaced the endogenous weights wik with counterfactual weights under
31We consider an alternative with portfolio weights proportional to book equity.
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the assumption that each investor holds an equal-weighted portfolio.32 The variation in this

instrument also comes from variation across investors’ investment universes. However, the

asset flows are weighted by individual elasticity: a stock with more intrinsically inelastic

investors (for example, passive mutual funds) will tend to have a lower aggregate elasticity.

The degree of strategic response χ is the response of asset demand to the interaction of

aggregate elasticity with the price (see equation (19)). To isolate this interaction from linear

effects, we also include a linear control for aggregate elasticity, similarly to X
(d)
k .33

The two instruments allow us to weaken the moment condition (20) to

E
[
εik|X(d)

k , X
(e)
k , p̂i,k, Êagg,k

]
= 0. (23)

The instrument for the aggregate elasticity depends on the model parameters (E0i and E1i).

This is not an issue for identification as parameters are by definition not endogenous. How-

ever, this precludes us from using standard methods such as two-stage least squares to esti-

mate the model. Appendix Section E.1 lists the unconditional moments derived from condi-

tion (23) that we use for estimation. In Section 4.3.3, we detail our numerical procedure for

estimating the model.

Relevance condition. To evaluate the strength of our instruments, we run what would

be a first-stage regression in a standard two-stage least square estimation. First, we regress

the price onto the instrument and the other characteristics for each manager. For each

date, we compute the first and the fifth percentile of the Kleibergen and Paap (2006) F-
32Our instrument for aggregate elasticity is the solution to the following problem:

Êik = E ik − χ Êagg,k;
∑
j

ŵjkAj/ exp(p̂k)Êjk = Êagg,k,

where the counterfactual weights ŵjk are defined as:

ŵjk =
1k∈Kj

|Kj |
.

33To maintain tractability in estimation we assume that the coefficient on this linear control, like χ, is
constant across investors. See Appendix Section E.3.
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statistics across managers. Figure 1 reports the histogram of these percentiles across all

dates. At least 95% of the F-statistics in any given date are above 18 (panel A); panel B

reports the first percentile. We also confirm the relevance of the elasticity instrument. In

the panel, we regress the product of the price interacted with the aggregate elasticity onto

their instrumented version and the other characteristics. We represent the histogram of the

F-statistic of this regression for each date in panel C; the F-statistic is always above 10.34

4.3.2 The reflection problem

While our instruments provide us with as many moment conditions as parameters, we discuss

how the estimation can disentangle the individual component of elasticity from strategic

responses. Individual investor elasticities Eik depend on an investor-specific term, E ik, and

on the aggregate elasticity Eagg,k:

Eik = E ik − χEagg,k. (24)

We need to disentangle whether investors are elastic because of their own characteristics or

in response to other investors in the market. For example, if in a market we see that all

investors behave in a very elastic manner, it could be that each of them is fundamentally

very elastic, high E ik. But it could also be the consequence of a strong positive feedback

where χ < 0. This identification problem is the reflection problem (Manski, 1993).

Two features of our model let us solve the reflection problem. First, there is variation in

investor composition across stocks, Ki. Second, we assume that the investor-specific compo-

nent of elasticity depends on observable asset characteristics, E ik = E0i + E ′1iXk. To measure

the effect of competition, the ideal experiment would be to compare the behavior of the same

investor for the same stock with variation in the characteristics of the other investors.

With the second assumption, two stocks with the same characteristics Xk elicit the same

baseline elasticity E ik for the same investor. Furthermore, because the coefficients on stock
34Appendix Figure IA.6 reports similar results for the book-equity weighted instrument.
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Figure 1. Relevance condition for the price and elasticity instruments.
Figure 1 shows the F-statistic of the first-stage regression for the price and aggre-
gate elasticity variables. For the price, we estimate the F-statistic (Kleibergen-
Paap) at the manager level for each year. We summarize these statistics at every
date with the 5th percentile (Panel A) and 1st percentile (Panel B). The verti-
cal red dashed line indicates the critical value of 10. In Panel C, we regress the
elasticity interacted with the price onto their instrumented version and report the
F-statistic for each date. The sample period is 2001–2020.

characteristics are investor specific, we focus on variation within the same investor across

different stocks. Finally, to estimate χ, we need variation in Eagg,k across stocks. The different

investment universes for different investors guarantee such a source of variation—remember

the instrument from equation (22). Figure 2 illustrates this idea: we need to compare how

Alice trades differently when facing different groups of other investors, such as for GameStop

and Tesla. Last, we need to ensure that the system of equations for all investors and stocks
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GameStop Tesla

Figure 2. Illustration of identification strategy.

given by (24) and the equilibrium condition for aggregate elasticity (18) has a unique solution.

In our example, to estimate Alice’s behavior, we also simultaneously need to figure out the

elasticity for Bob, Charles, Daunte, etc. The following theorem formalizes the intuition

behind the needed identifying variation and proves uniqueness. For simplicity of exposition,

we focus on the case of constant individual-specific component E ik = E i.

Theorem 1. A decomposition of demand elasticities {Eik}i,k into individual elasticities {E i}i

and the competition parameter χ is unique if:

(a) The graph G of investor-stock connections is connected.

(b) Position-weighted averages of demand elasticities are not constant across stocks: there

exists k and k′ such that
∑

i∈Ik wik/PkAiE i 6=
∑

i∈Ik′
wik′/Pk′AiE i.

We derive and discuss this theorem in Appendix E.2. In particular, we explain that the

two conditions for the result to apply are satisfied in our setting.

4.3.3 Implementation

Last, we need to implement the estimation free of the identification issues discussed above.

We cannot estimate (19) using off-the-shelf methods. This is because the degree of strategic

response χ and the aggregate elasticities Eagg,k must not only satisfy moment conditions but
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also respect the two-layer equilibrium relations. A naïve approach to solve all these conditions

simultaneously is computationally untractable due to the large dimension of the parameter

space.

However, we develop an algorithm that leads to rapid computation: estimating the model

for a given quarter takes about two minutes on a personal computer. The basic idea of our

method is to focus on two nested equilibrium questions. On the one hand, if one knows the

coefficient on aggregate elasticity, solving the values of aggregate elasticities can be done using

an iteration process: run standard instrumental regressions at the investor level to estimate

their demand, then update aggregate elasticities using equation (18); repeat until obtaining

convergence. On the other hand, if one knows all the equilibrium quantities, finding the

coefficient on aggregate elasticity is a low-dimensional fixed point problem involving a single

large panel regression; we solve it using the standard Newton method. Appendix Section E.3

details this estimation procedure.

4.4 Estimates

We estimate the model for each quarter from 2001Q1 to 2020Q4. Recall that our identification

comes from the cross-section, such that the model is estimated independently for each time

period.

4.4.1 Degree of strategic response χ

The average value of the degree of strategic response is χ = 2.2. We show a summary of

the estimates of the parameter χ across quarters in row 1 of Table 2; Appendix Figure IA.3

represents the whole distribution. The estimates show little variation around their median.

There are no detectable trends in the time series of the estimates as seen in Appendix

Figure IA.4.

A degree of strategic response of 2.2 implies substantial reactions at the individual level.

If all other investors become more aggressive and increase their elasticity by 1, an atomistic
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investor would respond by decreasing her elasticity by 2.2. However, the estimate of compe-

tition points to an equilibrium behavior far from the standard view. Recall that the “fiercely

competitive markets” benchmark corresponds to χ → +∞ and the no-strategic-response

benchmark to χ = 0. For example, our simple calculation in equation (5) shows that we need

large values of χ for strong equilibrium effects. Making 50% of investors passive, a value of

χ of at least 18 is necessary to compensate 90% of the drop in aggregate elasticity. This is

an order of magnitude larger than our estimate of 2.2, and actually than all of our estimates.

We investigate the quantitative implications of our value of χ for the impact of the rise of

passive investing in Section 5.

Robustness. We assess the robustness of the estimates along several dimensions. Table 2

reports the results of the estimation for these alternative specifications in rows 2 to 7. Overall,

the estimates of competition χ do not vary substantially across specifications — the median

value of χ across quarters is always between 1.91 and 2.51.

First, in row 2, we consider an alternative construction of the instrument where the coun-

terfactual portfolio positions are weighted by book equity instead of being equally weighted.

While these weights are potentially more realistic and can strengthen the relevance condition,

their ad-hoc nature might weaken the plausibility of the exogeneity condition. This leads to

a median χ of 1.91, close to our baseline. Row 3 includes additional controls for stock charac-

teristics to the regression (Xk): profitability, investment, and dividend yield. The estimates

do not change much. However, we find that including many additional parameters sometimes

hinders the convergence of the estimation algorithm (Appendix Table IA.1 restricts to a sam-

ple where all the methods converge, 2003Q3 to 2020Q4, and finds very similar results). Rows

4 and 5 considers an alternative weighting scheme. In our baseline, all investors contribute

equally to the estimate of χ, while row 4 weighs them by their assets under management.

Therefore, if our model was misspecified and the competitive response varied by investor

size, this change would lead to different estimates. This is not the case here, with extremely

close estimates, suggesting that we capture the empirically relevant moment for the rise in
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Table 2.
Estimates of the degree of strategic response χ under alternative spec-
ifications

Estimates for χ

Median 25th pct. 75th pct.

(1) Baseline Specification 2.15 1.81 2.76

(2) BE-weighted Instrument for Eagg 1.91 1.52 2.31
(3) Additional Controls 2.51 2.09 3.5
(4) AUM-weighted Regression 2.3 1.81 2.8
(5) Book-weighted Regression 2.27 1.76 2.78
(6) Investor-Type Grouping 2.42 1.93 2.94
(7) Constant χ 1.95

(8) No Instrument for Eagg 1.21 0.77 1.56
(9) No Instruments 0.96 0.67 1.38

Table 2 presents statistics of estimates of χ across dates (2001Q1–2020Q4) under various specifications.
Our baseline specification (1) estimates χ given aggregate elasticities Eagg,k each period via the regression:

log
wik

wi0
− pk = d0i + d′1iX

(d)
k + ξ Eagg,k −

(
E0i + E ′

1iX
(e)
k − χ Eagg,k

)
pk + εik,

where X(d)
k contains log book equity and log book equity squared. X(e)

k is log book equity. Active investors
with fewer than 1,000 stock holdings are pooled together based on their assets under management, such
that each group on average contains 2,000 stock holdings. The regression is weighted such that each
group’s weights sum to the same constant. Specification (2) shows estimates of χ based on the book-equity
weighted instrument. Specification (3) adds additional characteristics to X

(d)
k ; profitability, investment

and dividends relative to book equity. Specification (4) value-weights the regression by weighting investors
by their AUM. Specification (5) similarly value-weights the regression by weighting investors by their book
assets. Specification (6) groups investors both by investor type and AUM. Institutional investors whose
type we cannot determine are bundled together in a separate group. Specification (7) imposes for χ to be
constant across time in the estimation, with each year receiving equal weight. Specification (8) reports
results without instrumenting for the aggregate elasticity Eagg. Specification (9) additionally removes the
instrument for prices.

passive investing. Row 5 weighs by book assets under management to avoid contamination

by prices, also leading to virtually identical estimates. Row 6 addresses the details of how

we deal with investors with few positions. In the baseline, active investors with fewer than

1,000 stock holdings are grouped together based on their assets under management such that

each group on average contains 2,000 stock holdings.35 A finer way to construct these groups

is to make them based on investor types, but data coverage is incomplete. The estimates in
35This grouping ensures enough observations for each group to avoid incidental parameter issues.
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row 6 updates our estimation based on these data, which results in little change. Finally,

row 7 constrains the degree of strategic response χ to be constant over time. This pooled

estimation is more computationally demanding. It yields a value of χ of 1.95, close to the

baseline.

We also estimate the model without using instruments. Row 8 removes the instrument

for aggregate elasticity. In this case we find an average value of χ of 1.21. This estimate,

far below that from any other specification, suggests that it is important to account for

the endogeneity of elasticities — because they depend on actual portfolio weights, which

themselves depend on residual demand. Also removing the instruments for prices — row 9

— leads to even lower estimates, suggesting a deeper bias.

4.4.2 Stock-level elasticities

The model delivers estimates of aggregate elasticity, Eagg,k, for each stock. Figure 3 represents

these elasticities as a function of stock market capitalization for 2011Q3. Each green dot

corresponds to an elasticity estimate of one stock in our model for that date. We compare

our estimates to a model where individual-level elasticities are fixed, that is, where E1,i = 0

and χ = 0. These estimates are represented by red squares.

There is substantial cross-sectional variation in elasticities, lending credence to our ability

to identify the degree of strategic response χ. In both sets of estimates, the demand curve

for individual stocks is inelastic with average values around 0.45. This magnitude is far from

the asset-pricing benchmark of perfectly horizontal demand curves with infinite elasticity.36

However, it is consistent with other empirical estimates, in particular based on portfolio data;

see for example the discussion in Chang, Hong, and Liskovich (2014) and Koijen and Yogo

(2019).

Figure 3 demonstrates a few ways in which accounting for the endogeneity of demand

elasticities is important. First, the full model estimates exhibit less variation than the model
36Petajisto (2009) shows that standard models with risk aversion and many assets also imply very large

elasticities.
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Figure 3. Aggregate elasticity at the stock level: Eagg,k. Figure 3 rep-
resents estimates of the aggregate elasticity Eagg,k as a function of their market
capitalization (in logarithm) for the date 2011Q3. Each point represents a stock;
green circles are our estimates, while red squares correspond to a model where
elasticities are fixed.

with constant elasticities. With constant individual elasticities, variation in investor com-

position directly translates into variation in aggregate elasticities. However, with a positive

degree of strategic response χ, investors react to each other and soften such variation. For

example, if an active investor with high elasticity takes position in a stock, other investors

respond by trading less aggressively. Thus, stocks become more similar to each other.

Second, the full model exhibits a stronger negative relation between the size of a stock and

its elasticity. Koijen and Yogo (2019) point out that large stocks tend to have more inelastic

investors overall. Once we allow individual elasticities to respond to stock characteristics

and the aggregate elasticity, the data reveals an additional source for this relation: the same

investor behaves more inelastically for large stocks than small stocks. This additional source

of variation within investor rather than across investors leads to a steeper relation between
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Table 3.
Properties of aggregate elasticity Eagg

Panel A: Statistics of average elasticity across stocks

Average 25th pct. Median 75th pct.

Elasticity Eagg 0.489 0.411 0.46 0.54
Fixed elasticity 0.389 0.357 0.389 0.442

Panel B: Regression coefficient (by dates) of elasticity on size

Average 25th pct. Median 75th pct.

Elasticity Eagg −0.109 −0.117 −0.1 −0.0855
Fixed elasticity −0.0286 −0.0309 −0.0272 −0.0249

Panel C: Residual cross-sectional standard deviation of elasticity

Average 25th pct. Median 75th pct.

Elasticity Eagg 0.0498 0.0389 0.0441 0.0521
Fixed elasticity 0.0842 0.0739 0.0826 0.0917

Table 3 presents statistics of the aggregate elasticity Eagg,k,t. We estimate the elasticities in our baseline
model and in a specification with fixed elasticities (χ = 0 as in Koijen and Yogo (2019)). Panel A has
summary statistics of the average elasticity by date. Panel B shows summary statistics of the coefficient
βt from the the regression Eagg,k,t = αt + βtpk,t + εk,t by date. Panel C reports summary statistics of the
cross-sectional standard deviation of the residual from the regression described in Panel B. The sample
period is 2001–2020.

size and elasticity. For computational tractability, we estimate a linear relation between size

and elasticity at the investor-level; this linearity yields the tiny values of elasticity for the

very largest stocks.

Table 3 shows that these conclusions hold not only for this specific date, but across our

sample. We report the distribution across dates of various statistics of the cross-section of

Eagg. In particular, we confirm that our estimates have a steeper relation between elasticity

and stock size (Panel B), by about 25%, and less variation in elasticity across stocks (Panel

C), by about 50%.

The negative relation between size and elasticity might appear surprising given existing

evidence suggesting that large stocks are more informationally efficient.37 However, there
37See Lo and MacKinlay (1990), Jegadeesh and Titman (1993), Lakonishok, Shleifer, and Vishny (1994),

and Hong, Lim, and Stein (2000).
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are good reasons to think that institutions are more reluctant to change their positions for

large stocks than for small stocks. Mechanically, the largest stocks occupy a larger share of

portfolios. As of July 2021, the five largest corporations in the U.S. stock market account

for about 18% of total market capitalization.38 As a consequence, a large change in portfolio

weight would have a large effect on an institution’s portfolio return. Many institutions are

either benchmarked to the index or have hard dollar limits on how much they can trade

a given stock, and hence they would be unwilling to take on such large changes. As an

illustration, Figure 4 decomposes trading activity—the sum of squared relative change in

portfolio position—across percentiles of portfolio weights; Appendix Section F details this

calculation. There is much less trading activity for the larger portfolio positions: the top 50%

of portfolio positions only account for 9% of trading activity. As such, the interpretation of

our results is not so much that large stocks experience more mispricing but rather that high

investor elasticity cannot be the explanation for the evidence on their returns.39

5 Implications

5.1 The rise of passive investing

The last 20 years have seen a large increase in passive investing, a fact documented in French

(2008). More recently Stambaugh (2014) shows that both the fraction of mutual funds that

are actively managed and the active share of the portfolio of active equity mutual funds have

declined. We update and confirm these trends in Figure 5. The share of passive funds of the

U.S. stock market has grown from nearly zero at the beginning of the 1990s to more than

15% in 2019. Concurrently, the share of active funds topped out at the end of the 1990s and
38The total market capitalization of Apple, Microsoft, Amazon, Alphabet (Google), and Facebook amount

to $8.8tn for total U.S. market capitalization of $49tn.
39In the model of Section 3, both elasticity and the quantity of noise trading determine price informative-

ness. Farboodi et al. (2021) use a richer structural model to decompose informativeness into data, growth,
and volatility.
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Figure 4. Trading activity across portfolio positions. Figure 4 presents the cu-
mulative share of trading activity (defined in equation (IA.151)) by quantiles of investor
portfolio weights. The dashed line is the 45 degree line.

has declined from 20% to 15% from 2000 to 2019.40 Our model takes a more comprehensive

view of who are the passive investors, not restricting ourselves to mutual funds.41 With this

approach we find that the share of passive strategies has grown by 22 percentage points over

the last 20 years (see Appendix Figure IA.8).

Has the shift to passive portfolios impacted the behavior of prices? Understanding how

investors react to changes in the behavior of other investors is crucial to answer this question.

In the standard view of “fiercely competitive markets,” when some investors stop looking for

profitable trading opportunities, some other investors step in to replace them; prices do not

change. In contrast, if investors do not respond to others, the demand for stocks becomes

more inelastic, which strongly affects the behavior of prices. For example in the theory of

Section 3.1, more inelastic demand leads to prices that are more volatile and less informative.

Our model, and in particular the parameter χ, accounts for the strength of this reaction. We
40We report the dollar numbers in Figure IA.7. Net assets of passive funds has grown from virtually zero

to $5.4tn in 2019, whereas the net assets of active funds only increased from $600bn in 1993 to $5.5tn in
2019.

41Our methodology for measuring passive investing as inelastic demand is described further in Ap-
pendix D.3.
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Figure 5. Share of passive and active funds. Figure 5 shows the share of domestic
mutual funds and ETFs as a fraction of the US stock market capitalization for passive
funds (black solid line) and active funds (blue dashed line). Source: ICI (2020).

use the estimated parameters to quantify the impact of the rise in passive investing on

aggregate demand elasticities.

Starting with the demand system from Section 4, we impose an exogenous change in

the fraction of active investors and compute the new equilibrium elasticities. Of course the

rise of passive investing is not a purely exogenous phenomemon. However, most plausible

explanations of this phenomemon are independent from the rest of the demand system. For

example, the development of financial technology made it cheaper to pursue passive strategies:

fees on passive funds have dropped dramatically and ETFs have become available. Or, one

subset of investors, maybe after listening to finance professors, realized they were making

mistakes when pursuing active strategies.42 Such shocks are equivalent to an exogenous

change in the fraction of passive investors as long as they do not directly affect the demand

for the remaining investors.

Computing the effect of the rise of passive investing corresponds to the calculation of

equation (5), accounting for heterogeneous investors. Combining the individual demand
42Bhamra and Uppal (2019) estimate sizable welfare costs from lack of diversification.
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elasticity Eik in equation (14) with the equilibrium condition of (18), we have

Eagg,k = |Activek| ×

( ∑
i∈Activek

wikAi∑
j∈Activek

wjkAj

· E ik − χEagg,k

)
(25)

The aggregate elasticity combines three terms: (i) the fraction of the asset held by active

investors, |Activek|; (ii) the average baseline elasticity among active investors, weighted by

their respective positions; and (iii) an adjustment for the strategic response of active investors

to the aggregate elasticity, which depends on χ.43

From this expression we obtain the effect of a change in the fraction of active investing.

Changing |Activek| while holding everything else constant corresponds to the assumption

that the set of active investors that become passive is a representative sample of the active

population. This leads to a simple formula:

d log Eagg,k
d log |Activek|

=
1

1 + χ |Activek|
. (26)

The pass-through from a rise in active investment to aggregate elasticity is determined by

two numbers: the degree of strategic response χ and the fraction of active investors.44 When

χ is large, the aggregate elasticity does not respond to a shift in passive investing, and the

pass-through is zero. At the opposite end, when χ = 0 such that investors do not respond to

market conditions, the pass-through is 100%; an increase in the fraction of passive investors

translates into a one-to-one decrease in aggregate demand elasticity. Furthermore, because

only active investors change their elasticities in response to others (passive investors always

have an elasticity of zero), starting with a larger fraction of active investors leads to a smaller

pass-through.
43Using equation (25), we can solve for the equilibrium value of aggregate elasticity

Eagg,k =
∑

i∈Activek

wikAi∑
j∈Activek

wjkAj
· E ik × |Activek| ×

1

1 + χ |Activek|
.

44Appendix Section A.4 shows that with investor-specific χi, this expression remains unchanged, other
than what matters now is the position-weighted average χi among active investors.
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We can readily compute the pass-through: it solely depends on two observable quantities,

χ and |Activek|. In Section 4, we estimated the competition parameter and found that

χ = 2.15. Recall we measure the total quantity of passive investors as investors with an

elasticity of zero in a Koijen-Yogo demand system. Not surprisingly, we find a trend down

from 81% in 2001 to 59% in 2020. Taking the average across dates for the share of active

investors, 68%, and for the degree of strategic response, χ = 2.15, we find a value of the

pass-through of45

1

1 + χ |Activek|
=

1

1 + 2.15× 0.68
= 40.6%. (27)

This implies that the strategic response is strong enough to compensate about 60% of the

direct effect of a rise in passive investing. While substantial, this effect is far from the full

cancellation of the idealized view of financial markets.

We multiply this pass-through by the rise in the proportion of passive investing to obtain

the total effect on elasticity. We consider different takes for the size of the exogenous change.

First we use our comprehensive measure of passive investing. The decline from 81% to 59%

corresponds to a 32% drop, leading to elasticities lowered by 40.6%×32% = 13%. Translating

the elasticities into price multipliers, this implies that the price impact of buying $1 of a stock

went up roughly from $2.5 to $2.9. Second, we look at a narrower measure of the rise in

passive investing centered around the assets under management of passive mutual funds and

ETFs. Their fraction of total market capitalization has increased by 15 percentage points

in the last 30 years. Starting from a baseline of 81% of active investors, this represents a

19% drop in the total fraction of active investors. With our pass-through of 0.4, this reduces

elasticities by 8%.
45When the share of active investors is at 81% as in 2001 the pass-through is 36.5%, while when it is

towards its lowest value of 59% at the end of the sample it is 44%.
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5.2 Decomposing the evolution of the demand for stocks

In the previous exercise, we isolated the causal effect of a change in passive investing on equi-

librium demand elasticities. Next, we propose a positive account of the data: we decompose

the actual changes in elasticity over the last twenty years in light of our model.

5.2.1 The downward trend in aggregate elasticity

Figure 6 presents the time series of the distribution of equilibrium elasticities across stocks.

For each date, we compute quantiles of the cross-section of aggregate elasticities, Eagg,k. We

find a downward trend in equilibrium elasticities across the whole distribution of stocks. The

average elasticity (bold solid line) goes from 0.46 to 0.31, a 33% drop. The one exception to

the trend is the early part of the sample with an increase in elasticities between 2000 and

2004. The tails of the distribution also decrease. The 90th percentile (upper dashed line)

drops from 0.64 to 0.53. The 10th percentile (lower dashed line) also drops from 0.25 to 0.12.

The downward trend in equilibrium elasticities affects the whole distribution of stocks. We

further our understanding of what is behind the decline in the next section through a simple

decomposition.

5.2.2 Sources of change in elasticity

In Section 4, we estimated the demand elasticities for each investor-stock in each quarter

from 2001 to 2020. While our identification strategy is purely cross-sectional, we can use

the time-series dimension of our estimates as a description of the evolution of the demand

for stocks over time. To make parameters such as the investor-specific demand elasticity E i

comparable across periods, we use the model estimates under the assumption that the degree

of strategic response is constant over time (row 6 of Table 2).

We decompose changes in elasticity from year to year into three components by differen-

tiating equation (25). We denote by 〈E ik〉 the position-weighted average of the individual-

specific component of the elasticity of active investors, E ik; this corresponds to the second
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Figure 6. Distribution of aggregate elasticity across stocks. Figure 6
traces out the distribution of aggregate elasticity Eagg,k over time. The bold line
represents the average elasticity across stocks for each year. The solid lines rep-
resents the 25th and 75th percentile and the dashed lines the 10th and 90th
percentile.

term in equation (25). We derive the effect of a change in investor composition,

dEagg,k
Eagg,k︸ ︷︷ ︸

Change in aggregate elasticity

=
d|Activek|
|Activek|︸ ︷︷ ︸

Share of active investors

+ |Activek| ·
d〈E ik〉
Eagg︸ ︷︷ ︸

Individual elasticity of active investors

− χ|Activek|
dEagg
Eagg︸ ︷︷ ︸

Strategic response

. (28)

The first component accounts for changes in the share of active investors over time and their

ultimate effect on the elasticities. The second component corresponds to changes in the

average individual-level elasticity component of active investors; how their own characteris-

tics contribute to the elasticity. These forces correspond respectively to the extensive and

intensive margin of individual elasticities. The last component corresponds to the strategic

response to these two changes. If χ = 0 there is no strategic response and this term disap-

pears. Otherwise, the strategic response compensates the direct effects of both the share of
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Figure 7. Decomposition of the change in aggregate elasticity. Figure 7
shows the decomposition derived in equation (28) over time. We compute each
term of the decomposition for each date and accumulate the changes over time,
scaled by the initial aggregate elasticity.

active investors and their composition.

We accumulate the three terms of this decomposition over time in Figure 7 and we

summarize the total effects in Table 4.46 We smooth the series to make the secular trends

easier to identify. Recall that aggregate stock-level elasticity has decreased by 33% on average

(Figure 6). Consistent with the importance of the rise in passive investing discussed in

Section 5.1, we find that the direct effect of the decrease in the fraction of active investors

contributes 77% of this total drop in elasticity. Interestingly, investors also change their own
46Because we cannot continuously integrate equation (28), we use the natural discrete approximation of

the first two terms and compute the third one as a residual.
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Table 4. Decomposition of the change in aggregate elasticity Eagg

Aggregate elasticity Decomposition
Total change (2001-2020) Active share Active elasticity Competition

−33% 77% 119% −96%

Table 4 reports the total change in aggregate elasticity and its decomposition, as derived in equation (28).
We compute each term of the decomposition for each date and accumulate the changes over time. We report
each term as a fraction of the total change in elasticity.

elasticities at the intensive margin. While individual elasticities increase until 2006, they

experience a sharp drop after and contribute a 39% decline overall.47 Appendix Figure IA.9

confirms this pattern holds in the entire cross-section of investors. This second direct force

adds 119% to the drop in aggregate elasticities. However, the strategic response strongly

mitigates these individual changes in equilibrium. The strategic response reverses around

half of the decline, leading to the total change in aggregate elasticity of −33%.

5.2.3 Evolution under counterfactual degrees of strategic response

Finally, we ask how the changes in the individual components of investor demand would

have affected the aggregate elasticities under different strategic regimes. We start from the

equilibrium levels of demand elasticity at the beginning of our sample (2001Q1). We feed

into the model the two direct components highlighted above: how individual elasticities,

E ik, change over time and who becomes passive. We make different assumptions on how

investors react to changes in the behavior of others. We show the time series of the results

in Figure 8. The black line represents the actual evolution of the average aggregate elasticity

across stocks; the colored lines show the counterfactual results.

We first consider the case of ”fiercely competitive investors,” corresponding to χ → +∞.

In this situation any change in individual behavior is completely counteracted by other in-
47Relatedly, Pavlova and Sikorskaya (Forthcoming) documents a trend down in the tracking error of active

mutual funds.
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Figure 8. The evolution of aggregate elasticity under alternative com-
petition regimes. Figure 8 shows the evolution of aggregate elasticity Eagg,k
under alternative strategic regimes. The bold black line presents our baseline es-
timate. The dotted red line shows the elasticity with strong strategic response
(χ → ∞). The dashed green line shows the elasticity with no strategic response
(χ = 0).

vestors. The aggregate elasticities for each stock are pinned down at their initial level. The

only source of variation in the average elasticity over time are changes in the composition of

the universe of stocks. This is the dotted red line in Figure 8, which experiences very little

change over our sample. This result also confirms that the decline in aggregate elasticities

we have documented is not the consequence of changes in which stocks are traded.

The other extreme is the situation where investors do not react to others at all and χ = 0.

Then, all the changes in individual investor behavior directly feed into aggregate elasticities.

This leads to a more dramatic drop in elasticities over time than our baseline estimates. This

is the dashed green line in Figure 8. We observe a strong decrease, about twice as large as

the baseline.

Overall these results confirm that changes in the behavior of investors have profoundly
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changed the aggregate demand curves for individual stocks. Competition among investors

in setting their strategies played an important role in mitigating the total impact of those

changes. However, the strategic response was not strong enough to fully negate the course

of a downward trend in aggregate elasticities.

5.3 Implications in the cross-section of stocks

5.3.1 The strategic response in the cross-section

In our model, the response to a change in the share of passive investors occurs through the

strategic response: the other active investors change their elasticity. However, other types

of adjustments could happen, for example, the composition of active investors could change.

Also, the identity of who becomes passive might shape the response beyond their demand

elasticity, as is the case in some more sophisticated theories.

While these possibilities are not explicitly part of our empirical model, they would mani-

fest themselves through the changes in aggregate elasticity in response to changes in passive

investing. We investigate their presence by zooming in on sources of variation in passive

investing different from that driving our baseline estimates (the ones caused by our instru-

ment).

We regress annual log changes in stock-level elasticity on changes in the fraction of active

investors

log(Eagg,k,t)− log(Eagg,k,t−1) = β (log(|Activek,t|)− log(|Activek,t−1|)) + αk + γt + ek,t. (29)

The inclusion of time and stock fixed effects allows to focus on variation independent of

the average variation. A benchmark value for the coefficient β is the pass-through from

equation (26), about 0.4. However, if changes in individual-level elasticities, or other types

of changes in investor composition, are correlated with the active share, this would push

β away from the theoretical pass-through. So effectively, we are assessing whether changes
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in investor behavior beyond the strategic response are correlated with changes in passive

investing.

Table 5 presents the result, using the unconstrained cross-sectional model estimates. Col-

umn 1 is a univariate regression; columns 2 and 3 add date then stock fixed effects. Through-

out, we find a coefficient of about 0.4, close to the theoretical pass-through.48 This result

supports the interpretation that our measured degree of strategic response is the main driver

of the response of aggregate elasticity to changes in passive investing. Furthermore, because

our model estimates are only based on cross-sectional evidence, this result from including

the time series dimension provides additional support for our theory. Going in this direction,

in Appendix Table IA.3, we confirm that the regression results are mostly unchanged when

using the estimates that impose a constant value of χ through time.

We also consider what happens around index inclusions and exclusions. For these events,

the source of the variation in passive investing is known because index funds are forced to

change their portfolio after reclassification. Following Chang, Hong, and Liskovich (2014),

Ben-David, Franzoni, and Moussawi (2018), and Chinco and Sammon (2022), we exploit the

mechanical rule that allocates stocks between the Russell 1000 and 2000 indexes.49 We use

the index-switching event as an instrument for the share of passive investors; column 5 of

Table 5 reports the result. The first stage is significant with reclassification changing active

ownership by about 5% (see Appendix Table IA.4). The coefficient is 0.44, again very close

to the theoretical pass-through.

5.3.2 Behavior of asset prices

Our empirical model focuses on the estimation of demand elasticities for two reasons. First,

elasticities are the quantity through which investor strategic interaction manifests itself across

many theories. Second, these elasticities are a key determinant of the behavior of asset
48Statistical significance is not completely meaningful in this setting, because the left-hand-side of the

regression is model-generated.
49We are grateful to Alex Chinco for sharing his data with us.

48



Table 5. Change in aggregate stock-level elasticity Eagg,k on the active
share

Change in Elasticity
(1) (2) (3) (4) (5)

Change in Active share 0.446*** 0.475*** 0.457*** 0.426*** 0.389***
(0.044) (0.036) (0.036) (0.034) (0.066)

Date Fixed Effects Yes Yes Yes Yes
Stock Fixed Effects Yes
Controls Yes Yes
Estimator OLS OLS OLS OLS IV
N 50,292 50,292 49,661 50,292 10,619
R2 0.076 0.461 0.497 0.569 0.748
First-stage F statistic 9.444
First-stage p value 0.000

Table 5 reports a panel regression of annual log change in stock level elasticity Eagg,k on the annual log change
in the active share |Activek|. Column 2 adds date fixed effects. Column 3 adds stock fixed effects. Column 4
uses date fixed effects and controls for lagged book equity and annual log changes of log book equity. Column
5 instruments the log change in the active share |Activek| between Q1 and Q2 in any given year by two
indicator variables corresponding to stocks switching between Russell 1000 and 2000 in either direction. In
this column, the sample is restricted to stocks with CRSP market capitalization ranked between 500 to 1500
as of the end of Q1. The sample period is 2001–2020 for columns 1-4, and 2007–2020 for column 5. Standard
errors are 2-way clustered by date and stock for columns 1-4, and clustered by date for column 5.

prices. For example, an asset with highly elastic investors will tend to be more liquid,

because these investors are willing to provide liquidity. Similarly, aggressive investors limit

the influence of excess fluctuations in prices, which often results in less volatility or more

price informativeness. In this section, we document the relation between aggregate elasticity

and some of these aspects of asset prices in the cross-section.

In the spirit of our structural model, we run the following regressions:

Yk,t = βEagg,k,t + γ′tXk,t + αt + ek,t, (30)

where Yk,t is a stock-level outcome, Xk,t controls for stock characteristics, and αt are time

fixed effects. This OLS specification is likely biased because Eagg,k,t correlates with unobserved
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aspects of the stocks. Therefore, our preferred specification is 2SLS in which we instrument

for Eagg,k,t using Êagg,k,t. We have already shown in Section 4.3.1 that the first stage of this

estimation is strongly significant.

Table 6 reports the results. In columns 1 to 4, we measure the effect of aggregate elasticity

on daily stock volatility. The first two columns use total volatility and the latter two use

idiosyncratic volatility (from the three-factor model of Fama and French (1993)). While

the relation is weak without instrumenting, the IV specifications reveal a strongly negative

relation. Consistent with most theories, stocks with more elastic investors have less volatile

returns. This result also ties together our mechanism with the results of Ben-David, Franzoni,

and Moussawi (2018) on index inclusions. When a stock has more passive investors following

an index switch, its aggregate elasticity declines due to a lack of competition (Table 5), which

results in more volatility, as documented in their paper.

Columns 5 and 6 consider the measure of price informativeness of Dávila and Parlatore

(2018). We find no significant relationship. However, the large standard errors reveal that

the relation is difficult to estimate precisely rather than a tight zero. Columns 7 and 8

use the illiquidity measure of Amihud (2002). The IV specification is consistent with the

theory: illiquidity is lower for stocks with more elastic investors. An interesting aspect of

this connection is that our elasticity estimates focus on low-frequency aspects of portfolios

while the Amihud (2002) measure highlights high-frequency properties of returns.

Overall, these results support the view that estimating the demand for stocks is useful

to get to a better understanding of the behavior of financial markets. Specifically, demand

elasticities appear to shape many aspects of this behavior.
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Table 6. Stock-level elasticities Eagg,k and the behavior of asset prices

Total Volatility Idiosyncratic Volatility Price informativeness Illiquidity
(1) (2) (3) (4) (5) (6) (7) (8)

Elasticity 0.081 −0.757∗∗∗ 0.008 −0.740∗∗∗ −0.078 −0.270 1.250∗∗∗ −0.475∗∗

(0.068) (0.164) (0.049) (0.134) (0.306) (0.731) (0.066) (0.228)

Controls Yes Yes Yes Yes Yes Yes Yes Yes
Estimator OLS IV OLS IV OLS IV OLS IV
N 219,531 219,531 206,140 206,140 66,677 66,677 216,983 216,983
R2 0.218 0.178 0.247 0.209 0.020 0.019 0.744 0.610

Table 6 reports panel regressions of measures of volatility, price informativeness and illiquidity on stock level elasticity Eagg,k. All variables are
demeaned and standardized for each date. Odd columns show results from OLS regressions. Even columns show results from instrumental variables
regressions that use our instrument for stock elasticity defined in equation (22). For columns (1) and (2), we compute the total daily volatility of
stocks. For columns (3) and (4) we compute daily idiosyncratic volatility with respect to the Fama and French (1993) three-factor model based on
daily CRSP data within a quarter. Columns (5) and (6) take the measure of price informativeness provided by Dávila and Parlatore (2018). Columns
(7) and (8) use the Amihud (2002) measure for illiquidity as the dependent variable, calculated again based on daily CRSP data within a quarter.
All specifications are weighted by lagged market equity. We follow our main specification for the estimation of elasticity and control non-linearly for
book equity. The sample period starts in 2001 for all columns, and ends in 2020 for specifications 3–4 and 7–8, 2019 for specifications 1–2, and 2017
for specifications 5–6, based on respective data availability. Standard errors are 2-way clustered by date and stock.



6 Conclusion

The idea that investors compete with each other is fundamental in financial markets. A classic

hypothesis, motivated by the view of ”fiercely competitive markets,” states that changes in a

group of investors’ behavior have no impact on prices because others step in to compensate.

Many theories of financial decisions work through strategic responses: how others trade affects

how you trade. While strategic responses permeate all of finance, an empirical understanding

of their importance remains elusive. We put forward a framework that enables measurement

of the degree of strategic response and the analysis of its impact on equilibrium outcomes.

In the US stock market we find evidence that investors do react to each other: when

an investor is surrounded by less aggressive traders, she trades more aggressively. However,

this response is much weaker than anticipated by the classic hypothesis. Strategic responses

compensate only 60% of the effect of changes in investor behavior on the aggregate demand

for a stock. This implies that the rise in passive investing leads to substantially more inelastic

markets.

The ability to measure strategic responses opens a new path to address many other

important issues in finance. To assess the impact of financial regulation on some market

participants, for example the Basel III leverage constraint on banks, one cannot ignore how

other institutions will respond. Likewise, to understand how the distress of some financial

institutions creates fire-sale spillovers, one must realize that other investors will step up.

Our framework measures how many actually will. Recent work in international finance

emphasizes the importance of cross-border flows and global imbalances. What happens if

a large sovereign institution stops investing in one market, like China with US treasuries?

Again, competition among investors will be a crucial input in determining the final impact of

such a momentous shift. Moreover, the rise and availability of big data promises to change

the face of institutional investing.

52



References
2020. Investment Company Fact Book – A Review of Trends and Activities in the Investment

Company Industry. Investment Company Institute, 60 ed.

Amihud, Yakov. 2002. “Illiquidity and Stock Returns: Cross-Section and Time-Series Effects.”
Journal of Financial Markets 5 (1):31–56.

Backus, Matthew, Christopher Conlon, and Michael Sinkinson. 2019. “Common ownership
in america: 1980-2017.” Tech. rep., National Bureau of Economic Research.

Backus, Matthew, Christopher T Conlon, and Michael Sinkinson. 2020. “Common Ownership
Data: Scraped SEC form 13F filings for 1999-2017.”

Bai, Jennie, Thomas Philippon, and Alexi Savov. 2016. “Have financial markets become
more informative?” Journal of Financial Economics 122 (3):625–654.

Balasubramaniam, Vimal, John Y Campbell, Tarun Ramadorai, and Benjamin Ranish. 2021.
“Who Owns What? A Factor Model for Direct Stockholding.” Mimeo, Harvard University.

Bastianello, Francesca and Paul Fontanier. 2021. “Partial Equilibrium Thinking in General
Equilibrium.” Tech. rep., Harvard.

Beber, Alessandro, Michael W. Brandt, Jason Cen, and Kenneth A. Kavajecz. 2018. “Mutual
Fund Performance: Using Bespoke Benchmarks to Disentangle Mandates, Constraints and
Skill.” Tech. rep., Duke University.

Ben-David, Itzhak, Francesco Franzoni, and Rabih Moussawi. 2018. “Do ETFs Increase
Volatility?” The Journal of Finance 73 (6):2471–2535.

Bhamra, Harjoat S. and Raman Uppal. 2019. “Does Household Finance Matter? Small
Financial Errors with Large Social Costs.” American Economic Review 109 (3):1116–54.
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A Equilibrium Model of Financial Markets with In-
vestor Competition

We derive the implications of the model of Section 2. First, we provide formal derivations
for the effect of the rise of passive investing presented in Section 2.3. Then, we show how the
degree of strategic response shapes the relative prevalence of overpricing and underpricing.
Next, we illustrate the role of investor interactions for dynamic aspects of limits to arbitrage.
Finally, we re-evaluate the effect of a rise of passive investing under heterogeneity.

A.1 The effect of a rise in passive investing
In Section 2.3, we ask how the aggregate elasticity changes when a fraction of investors be-
comes passive. We start with an economy with homogeneous investors and assume an initial
equilibrium p = p̄. Because all investors are identical, we have Ei = Eagg. Combined with
elasticity decision equation (4), this gives E i = (1 + χ)Ei. We denote the initial equilibrium
elasticity of investors by Ei = Eagg = E0.

Assume that a fraction 1 − α of investors becomes passive such that their elasticity
becomes zero and their level of demand is unchanged. We have to determine the new
elasticity of active investors Ei. The individual decisions and equilibrium conditions are:

Ei = E i − χEagg, (IA.1)
Eagg = αEi + (1− α) · 0. (IA.2)

Solving this system gives aggregate elasticity:

Eagg =
α

1 + αχ
Ei. (IA.3)

Eagg =
α

1 + αχ
(1 + χ)E0 = αE0 +

αχ

1 + αχ
(1− α)E0. (IA.4)

The first part of the equation corresponds to the direct effect of the rise in passive investing,
and the second part represents the compensation from the strategic response of the remaining
active investors.

A.2 Asymmetry of mispricing
In this section, we show that in markets with strong strategic responses, prices are less
responsive to demand when their levels are high than when they are low. The opposite
happens for low degrees of strategic response. This distinction has important practical
implications: when strategic responses are mild, as we find in the data, we expect to observe
more situations of overpricing than underpricing, and more sensitivity to demand shocks for
overpriced assets. This prediction lines up with the evidence in Stambaugh, Yu, and Yuan
(2012) and Stambaugh, Yu, and Yuan (2015) across a large set of anomaly strategies.50 In

50The anomaly strategies are portfolios sorted on characteristics that predict unconditional returns, in the
style of Fama and French (1993).
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particular, they document that trading the short leg of the portfolio (overpriced stocks)
is more profitable than the long leg (underpriced stocks) in episodes of high investment
sentiment (demand shocks in our theory).51

Multiplier. First, we revisit the calculation of equation (3) in the presence of strategic
responses. We show below (Appendix A.2.1) that the price multiplier to an aggregate demand
shock becomes:

Magg =
1

Eagg
· 1

1 + χ
1+χ

Var[Ei]
Eagg (p− p̄)

, (IA.5)

where Var[Ei] is the demand-weighted cross-sectional variance of elasticity.52 For small devi-
ations of the price from its baseline (small values of p− p̄), the response of prices to a change
in demand is still determined by the aggregate elasticity Eagg. For example, at first order,
the effect of a rise in passive investing on aggregate elasticity is reflected one-to-one into the
multiplier. In “fiercely competitive markets,” the rise in passive investing does not affect the
sensitivity of prices to demand, whereas it increases it when there are no strategic responses.
We now turn to how the multiplier changes when the price deviates from its baseline p̄.

No strategic response. Without strategic responses (χ = 0), the aggregate multiplier
is Magg = E−1agg. While each of the investors’ elasticities is fixed at E i, their contribution to
aggregate elasticity depends on their relative demand. When the price is below its baseline,
the more elastic investors have a stronger response than the less elastic investors: they buy
relatively more of the asset. Thus more elastic investors represent a larger fraction of the
market; aggregate elasticity increases. For example, in response to a supply shock, the
aggregate elasticity moves in the opposite direction from the price: ∆Eagg = −Var[Ei] ∆p.
How much investors differ from each other, the variance of individual elasticities, controls
the strength of the composition effect. The market has a higher capacity to absorb demand
shocks on the downside than on the upside. Without strategic responses, overpricing is more
likely to happen than underpricing.

Strong strategic responses. Consider now the other extreme of a high degree of strate-
gic response, χ → ∞. In this case the aggregate elasticity Eagg is constant; if more elastic
investors decrease their relative share, everybody becomes more elastic and exactly com-
pensates the initial decline. However, the multiplier changes because the second term of
the product in equation (IA.5) is not constant: it is smaller than one for p > p̄ and larger
than one otherwise. What happens then? If the price is above its baseline, the increase
in individual elasticities due to the strategic response implies a decrease in demand. Be-
cause all investors become more agressive, they demand less of the asset, which prevents the

51As such, imperfect competition is an alternative explanation to short-sell constraints (for example, Miller
(1977) or Haddad, Ho, and Loualiche (2021)) for the pervasiveness of overpricing.

52Formally this corresponds to
Var[Ei] =

∫ (
E2
i

Di

S

)
− E2

agg.

60



price from increasing much, leading to a smaller multiplier. The demand effect goes in the
opposite direction when the price is below its baseline. Overall this leads to an opposite
behavior of the multiplier Magg relative to no strategic response. The multiplier is larger
with underpricing than overpricing: underpricing is more likely to happen than overpricing.

A.2.1 Derivations

How do prices in the two-layer equilibrium decrease in response to an exogenous shift in the
supply of a stock, ∆S? We start by defining aggregation operators which weight investors’
outcomes by the fraction of the stock they own:

Ě [xi] =

∫
xi
Di

S
, (IA.6)

V̌ar [xi] =

∫
x2
i

Di

S
−
(∫

xi
Di

S

)2

(IA.7)

ˇCov [xi, yi] =

∫
(xi − Ě[xi])(yi − Ě[yi])

Di

S
. (IA.8)

To see the impact of the change in supply on the equilibrium we start by deriving the
change in individual demand:

∆Di = ∆edi−Ei(p−p̄) = −EiDi∆p− (p− p̄)Di∆Ei, (IA.9)

such that change in aggregate demand, which corresponds to the change in aggregate supply,
reads:

∆S = ∆D = −∆pS

∫
EiDi/S − (p− p̄)S

∫
∆EiDi/S (IA.10)

= −∆pSEagg + χ(p− p̄)S∆Eagg, (IA.11)

where in the last equation we used the individual elasticity equation Ei = E i −χEagg leading
to the uniform change in individual investors’ elasticity

∆Ei = −χ∆Eagg. (IA.12)

To estimate the change in aggregate elasticity we write:

∆Eagg =
∫

∆(EiDi/S) =

∫
∆EiDi/S − ∆S

S
Eagg +

∫
Ei∆Di/S (IA.13)

= −χ∆Eagg −
∆S

S
Eagg −∆pĚ

[
E2
i

]
+ χ(p− p̄)Eagg∆Eagg. (IA.14)

∆Eagg = − 1

1 + χ− χ(p− p̄)Eagg

(
Eagg

∆S

S
+ Ě

[
E2
i

]
∆p

)
, (IA.15)

Then we can plug the change in aggregate elasticity into the main equation expressing the
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change in aggregate demand and solve for ∆p as a function of the change in supply ∆S.

∆S

S
= −Eagg∆p− χ(p− p̄)

1 + χ− χ(p− p̄)Eagg

(
Eagg

∆S

S
+ Ě

[
E2
i

]
∆p

)
(IA.16)

After some algebra, we find the change in prices in response to an exogenous change in
supply:

∆p =
1

Eagg
· 1

1 + χ
1+χ

p−p̄
Eagg V̌ar[Ei]

∆S

S
= Magg ·

∆S

S
, (IA.17)

where we define the aggregate multiplier Magg as:

Magg =
1

Eagg
· 1

1 + χ
1+χ

p−p̄
Eagg V̌ar[Ei]

. (IA.18)

A.3 Limits to arbitrage
An important insight is that engaging in arbitrage trades (or more broadly exploiting mis-
pricing) is a risky activity and this risk limits the effectiveness of arbitrageurs (De Long
et al. (1990), Shleifer and Summers (1990), Shleifer and Vishny (1997), Brunnermeier and
Pedersen (2008)).

If an asset is underpriced (p < p̄), we expect arbitrageurs (high elasticity investors) to
take on large positions. When the mispricing worsens, the arbitrageurs suffer large losses
due to their large exposure. If they are unable to raise additional capital, they have to
liquidate some of their positions which pushes the price down even further. This feedback
creates a natural instability of arbitrage activity: shocks that worsen the mispricing hurt the
arbitrageurs and deepen the mispricing. Mitchell, Pulvino, and Stafford (2002) and Mitchell
and Pulvino (2012) document this instability in action.

The degree of strategic response plays an important role in this process. Without strategic
responses, the arbitrage capacity destroyed by arbitrageurs’ losses is gone altogether. With
strategic responses, other investors become more elastic in response to the decline of the
arbitrageurs. They purchase more of the asset, thereby partially compensating the lower
positions of the arbitrageurs.

We can illustrate this mechanism in our model by considering how the price responds
to a demand shock that affects disproportionately investors with high elasticity. Below
(Appendix A.3.1), we assume that each investor’s baseline demand changes by an amount
{∆di}i and compute the equilibrium price response:

∆p = Magg ×
[
E (∆di) +

χ

1 + χ
(p− p̄) Cov(Ei,∆di)

]
, (IA.19)

where expectation and covariance represent demand-weighted moments. Without strategic
responses, χ = 0, the price response is simply the product of the aggregate multiplier Magg

with the average demand shock E(∆di). A shock that hurts disproportionately investors
with large positions (for example the asset is underpriced and these investors have a high
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demand elasticity) pushes the price down. The second term captures the role of strategic
responses. When the asset is underpriced (p < p̄), and demand decreases more for high
elasticity investors (Cov(Ei,∆di) < 0), we obtain a positive response which compensates
the direct effect. A symmetric compensation occurs when the asset is overpriced (see the
derivations below). Interestingly, the stabilizing role of strategic responses is stronger the
further away prices are from their baseline.53

A.3.1 Derivations

We consider an experiment where demand across investors changes by {∆di}i. Solving for
the equilibrium response of the price and elasticity is similar to the simple case of a change in
aggregate supply. First, we consider the effect of a change in investors’ demands on aggregate
demand:

∆D = ∆

∫
edi−Ei(p−p̄) =

∫
∆diDi −

∫
Ei∆pDi −

∫
(p− p̄)∆EiDi (IA.20)

∆D

S
= Ě [∆di]− Eagg∆p+ χ(p− p̄)∆Eagg, (IA.21)

where we have used Ě[Ei] = Eagg and ∆Ei = −χ∆Eagg. To solve for the change in price as a
function of the change in investors’ demands we use the second market clearing condition of
aggregate elasticities to find ∆Eagg:

∆Eagg =
∫

∆EiDi/S +

∫
Ei∆Di/S (IA.22)

= −χ∆Eagg +
∫

Ei∆diDi/S −∆p

∫
E2
i Di/S − (p− p̄)

∫
Ei∆EiDi/S (IA.23)

= (−χ+ χ(p− p̄)Eagg)∆Eagg +
∫

Ei∆diDi/S −∆p

∫
E2
i Di/S (IA.24)

=
1

1 + χ− χ(p− p̄)Eagg
·
(
Ě [Ei∆di]− Ě

[
E2
i

]
∆p
)
. (IA.25)

We plug this expression back into the expression for the change in aggregate demand above:

∆D

S
= Ě [∆di]− Eagg∆p+

χ(p− p̄)

1 + χ− χpEagg
·
(
Ě [Ei∆di]− Ě

[
E2
i

]
∆p
)

(IA.26)

The supply is fixed such that ∆D/S = 0, which after rearranging terms gives the final
expression for the change in price:

∆p =
1

Eagg
1

1 + χ
1+χ

p−p̄
Eagg V̌ar [Ei]

(
Ě [∆di] +

χ

1 + χ
(p− p̄) ˇCov (Ei,∆di)

)
(IA.27)

53Duffie (2010) and Duffie and Strulovici (2012) study how the competitive response unfolds over time.
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We recognize the first term as the standard aggregate multiplier (obtained when we derived
the response to change in supply) and write the price response as:

∆p = Magg ·

 Ě
[
∆dj

]︸ ︷︷ ︸
average demand shock

+
χ

1 + χ
(p− p̄) ˇCov (Ei,∆di)︸ ︷︷ ︸

average elasticity composition

 . (IA.28)

A.4 The effect of a rise in passive investing under heterogeneity
In Section A.1, we show how the elasticity changes when a fraction of investors become
passive. Here, we re-do a similar calculation under heterogeneity in baseline elasticitity E i

(see also Section 5.1) and degree of strategic response χi. Again, we start with an economy
with an initial equilibrium p = p̄.

Individual decisions and equilibrium conditions are:

Ei = E i − χiEagg, (IA.29)

Eagg =
∫

Ei
Di

S
. (IA.30)

Combining the two yields

Eagg =
∫

Ei
Di

S
(IA.31)

=

∫
E i

Di

S
− Eagg

∫
χi
Di

S
(IA.32)

= Ě [E i]− Ě [χi] Eagg (IA.33)

= Ě [E i]×
1

1 + Ě [χi]
. (IA.34)

Denote the set of active investors as Active, and the fraction of assets held by this group
by |Active|. Passive investors have E i = χi = 0, such that

Eagg = |Active| × Ě [E i|i ∈ Active]× 1

1 + |Active| × Ě [χi|i ∈ Active]
. (IA.35)

The aggregate elasticity is the product of the active share, the average baseline elasticity
among active investors, and an equilibrium term capturing the strategic responses of active
investors. Note that this expression looks exactly like in the case with homogeneous χ (e.g.
equation (25)), other than now the strength of strategic response is controlled by the average
χi among active investors.

Now consider the effect of a change in the active share |Active|. We assume that random
investors are switching, meaning that the set of active investors that become passive is a rep-
resentative sample of the active population, such that Ě [E i|i ∈ Active] and Ě [χi|i ∈ Active]
remain unaffected by the change. Then:
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d log Eagg
d log |Active|

=
|Active|
Eagg

×

Ě [E i|i ∈ Active]− |Active|×Ě[Ei|i∈Active]×Ě[χi|i∈Active]

1+|Active|×Ě[χi|i∈Active]

1 + |Active| × Ě [χi|i ∈ Active]

 (IA.36)

= 1− |Active| × Ě [χi|i ∈ Active]

1 + |Active| × Ě [χi|i ∈ Active]
(IA.37)

=
1

1 + |Active| × Ě [χi|i ∈ Active]
. (IA.38)

The pass-through from a change in the active share mirrors equation (26). The only
difference is that the average degree of strategic response χi among active investors is what
determines the pass-through instead of the single parameter χ of the homogenous model.

A.5 Exogenous change in the baseline elasticity
Last, we consider a change in investors’ baseline elasticity ∆E i. We start with the relative
change in aggregate demand:

∆D

S
= −(p− p̄)

∫
∆EiDi/S − Eagg∆p (IA.39)

= −(p− p̄)Ě [∆E i] + χ(p− p̄)∆Eagg − Eagg∆p (IA.40)

We use market clearing to get ∆D/S = 0:

∆p = − 1

Eagg
(
(p− p̄)Ě [∆E i]− χ(p− p̄)∆Eagg

)
. (IA.41)

The change in aggregate elasticity in the case of changes in baseline elasticities is different
than in the previous cases:

∆Eagg =
∫

∆(EiDi/S) =

∫
∆E iDi/S − χ∆Eagg +

∫
Ei∆Di/S (IA.42)

=

∫
∆E iDi/S − χ∆Eagg − (p− p̄)

∫
Ei∆EiDi/S + χ(p− p̄)Eagg∆Eagg −∆p

∫
E2
i Di/S

(IA.43)
= Ě [∆E i]− χ∆Eagg − (p− p̄)Ě [Ei∆E i] + χ(p− p̄)Eagg∆Eagg −∆pĚ

[
E2
i

]
(IA.44)

After rearranging the terms and plugging in the expression for the change in the price, we
find:(

1 + χ+ χ(p− p̄)
V̌ar[Ei]
Eagg

)
∆Eagg =

(
1 + (p− p̄)

V̌ar [Ei]
Eagg

)
Ě [∆E i]− (p− p̄) ˇCov

(
Ei,∆Ēi

)
(IA.45)
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Plugging back into the change in the price we have:

∆p = −Magg
p− p̄

1 + χ

(
Ě [∆E i] + (p− p̄) ˇCov (Ei,∆E i)

)
. (IA.46)
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B Model of Information Acquisition

B.1 Setup
There is one period and one asset, and a continuum of agents indexed by i ∈ [0, 1]. Each
agent has CARA preferences with risk aversion ρi:

Ui = Ei[−e−ρiWi ], (IA.47)

and initial wealth Wi. The gross risk-free rate is 1, and the (random) asset payoff is f . The
asset is in noisy supply x̄+ x with x̄ an exogenous fixed parameter and x ∼ N (0, σ2

x).
Each agent has a prior that f ∼ N (µi, σ

2
i ). Following Veldkamp (2011), agents start

with a flat prior on f and receive signal µi such that the signal is distributed µi ∼ N (f, σ2
i ).

Each agent can acquire a private signal ηi ∼ N (f, σ2
i,η) at cost ci(σ

−2
i + σ−2i,η ), with ci(.)

a non-decreasing positive function. That is, obtaining more precise signals is more costly.
The signal being private implies in particular that signal realizations are uncorrelated across
agents conditional on the fundamental f .

We focus on rational expectations equilibria, and among those linear equilibria specifi-
cally. These are equilibria in which the price takes the form:

p = A+Bf + Cx. (IA.48)

An equilibrium is a set of coefficient (A,B,C), information choices σ2
i,η, demand curves

Di(p|ηi) such that:

(a) Each demand function and information choice maximizes expected utility, taking as
given the price function.

(b) The market for the asset clears: x̄+ x =
∫
Di(p|ηi)di.

To solve the model, we process in two steps: first we solve for the price given information
decisions; second, we derive equilibrium information decisions.

B.2 Solving prices given information
We are going to solve for the price function p = A+Bf +Cx. First, we solve for allocations
given the information choice and finally we use market clearing to pin down the price.

Agents form posterior beliefs on the fundamental f based on their prior µi, signal ηi, and
based on prices. The signal agents can extract from prices about f is:

s(p) =
p− A

B
= f +

C

B
x. (IA.49)

Given the three signals, we are able to derive the posterior belief about f , which will be
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distributed as N (µ̂i, σ̂
2
i ) as follows:

σ̂−2i = σ−2i + σ−2iη +
B2

C2
σ−2x (IA.50)

µ̂i = σ̂2
i

(
σ−2i µi + σ−2iη ηi +

B2

C2
σ−2x s(p)

)
(IA.51)

Asset Demand. Abstracting from the cost of acquiring information, the expected utility
function for a given asset holding qi is:

Ui(qi) = −E [exp (−ρi (fqi − pqi))] (IA.52)

= − exp

(
−ρiqi (E[f ]− p) +

ρ2i
2
q2i Var[f ]

)
. (IA.53)

The first order condition with respect to qi gives us immediately:

− ρi (E[f ]− p) + ρ2i qi Var[f ] = 0

⇐⇒ qi =
1

ρi Var[f ]
(E[f ]− p)

⇐⇒ qi =
1

ρi
σ̂−2i (µ̂i − p) (IA.54)

Market Clearing. The market clearing condition reads:∫
qidi = x̄+ x. (IA.55)

Given asset demand this translates into:∫
1

ρi
σ̂−2i (µ̂i − p) di = x̄+ x (IA.56)

The goal now is to find (A,B,C), which we identify directly from the market clearing con-
dition. First we replace the expressions for the price function and the posteriors mean and
variances in the market clearing equation:∫

1

ρi
σ̂−2i

[
f +

B

C

σ̂2
i

σ2
x

x

]
di−

∫
1

ρi
σ̂−2i [A+Bf + Cx] di = x̄+ x (IA.57)
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We identify all the terms that are linear in f and find that B = 1. Next, we group the terms
that are linear in x, which yields∫

1

ρi

1

C
σ−2x di−

∫
1

ρi
σ̂−2i Cdi = 1

⇐⇒
∫

1

ρi

[
1

C
σ−2x − Cσ−2i − Cσ−2iη − 1

C
σ−2x

]
di = 1

⇐⇒ C = −
[∫

1

ρi

(
σ−2i + σ−2iη

)
di

]−1
, (IA.58)

where we used the expression of the posterior found above to substitute into the second
equation. Last, we gather the constant terms to find A:

A = −x̄

[∫
1

ρi
σ̂−2i di

]−1
. (IA.59)

B.3 Demand elasticity
We recall the demand schedule for agent i:

qi =
1

ρi
σ̂−2i (µ̂i − p)

=
1

ρi
σ̂−2i

(
σ̂2
i

[
σ−2i µi + σ−2iη ηi + C−2σ−2x s(p)

]
− p
)

=
1

ρi

(
σ−2i µi + σ−2iη ηi + C−2σ−2x (p− A)− σ̂−2i p

)
=

1

ρi

(
σ−2i µi + σ−2iη ηi +

(
C−2σ−2x − σ̂−2i

)
p− C−2σ−2x A

)
. (IA.60)

We can read the demand elasticity as:

Ei = −dqi
dp

= − 1

ρi

(
C−2σ−2x − σ̂−2i

)
=

1

ρi

(
σ−2i + σ−2iη

)
. (IA.61)

In the model, a regression of qi on p would not give us the proper elasticity. There is a
bias in the regression because p is correlated with µi and ηi. It is still possible to recover
the elasticity using an instrument; for example the supply shock x covaries with p but is
uncorrelated with µi and ηi.

We define the aggregate demand elasticity as

Eagg =
∫

Ejdj. (IA.62)

We can express the equilibrium in terms of demand elasticities. Taking (IA.61) and (IA.62)
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together, we express the solution for the equilibrium

C = −
[∫

1

ρj
(σ−2j + σ−2jη )dj

]−1
= E−1agg. (IA.63)

B.4 Optimal information
Computing expected utility. Conditional on the signal and the price, expected utility
is:

Ui(qi) = −E [exp (−ρi (fqi − pqi)) |p, η] (IA.64)

= − exp

(
−ρiqi (E[f |p, η]− p) +

ρ2

2
q2i Var[f |p, η]

)
(IA.65)

= − exp

(
−1

2

(E[f |p, η]− p)2

Var[f |p, η]

)
, (IA.66)

where the last line is derived using standard properties of quadratic functions.54

We can write:

E[f |p, η]− p = (E[f |p, η]− E[f |p])︸ ︷︷ ︸
z

+(E[f |p]− p) . (IA.67)

Conditional on p, z has mean 0 and its variance σ2
z can be obtained from:

f − E[f |p]︸ ︷︷ ︸
variance: (σ−2

i +σ−2
x /C2)−1

= (f − E[f |p, η])︸ ︷︷ ︸
variance: σ̂2

i

+ z︸︷︷︸
variance: σ2

z

(IA.68)

Using equation (7.32) in Veldkamp (2011), this maps to:55

F = −1

2

1

σ̂2
i

(IA.69)

G = − (E[f |p]− p)
1

σ̂2
i

(IA.70)

H = −1

2
(E[f |p]− p)2

1

σ̂2
i

(IA.71)

54For a function f(x) = ax2 + bx, the maximum is reached for x∗ = −b/(2a) and its value is f(x∗) =
−b2/(4a).

55There is a general formula for the mean of the exponential of the quadratic of a normal variable. If we
take the multivariate normal z ∼ N (0,Σ):

E [exp(z′Fz +G′z +H)] = |I − 2ΣF |−1/2 exp

(
1

2
G′(I − 2ΣF )−1ΣG+H

)
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So expected utility conditional on the price is:

U0|p = −(1− 2σ2
zF )−1/2 exp

(
1

2
G2
(
1− 2σ2

zF
)−1

σ2
z +H

)
= −(1 +

σ2
z

σ̂2
i

)−1/2 exp

(
1

2

(E[f |p]− p)2

σ̂i
2

[
(1 +

σ2
z

σ̂2
i

)−1
1

σ̂2
i

σ2
z − 1

])

= −(1 +
σ2
z

σ̂2
i

)−1/2 exp

(
1

2

(E[f |p]− p)2

σ̂i
2

[
(1 +

σ2
z

σ̂2
i

)−1(
1

σ̂2
i

σ2
z − 1− σ2

z

σ̂2
i

)

])

= −(1 +
σ2
z

σ̂2
i

)−1/2 exp

(
−1

2

(E[f |p]− p)2

σ̂i
2

[
(1 +

σ2
z

σ̂2
i

)−1
])

U0|p = −(1 +
σ2
z

σ̂2
i

)−1/2 exp

(
−1

2

(E[f |p]− p)2

σ̂i
2 + σ2

z

)
. (IA.72)

Expected utility is:

E [U0|p] = −(1 +
σ2
z

σ̂2
i

)−1/2E exp

(
−1

2

(E[f |p]− p)2

σ̂i
2 + σ2

z

)

= −

[
σ−2i + σ−2x /C2

σ−2i + σ−2iη + σ−2x /C2

]1/2
· E

[
exp

(
−1

2

(E[f |p]− p)2

(σ−2i + σ−2x /C2)−1

)]
(IA.73)

where we use (IA.68) in the second equality.

Optimal information. To derive the optimal information choice, investors trade off utility
with the cost of acquiring information, which translates in utility terms to:

U
(c)
0 = U0 · exp

(
ρici(σ

−2
i + σ−2iη )

)
. (IA.74)

The cost function ci(·) is increasing in the signal precision and can be specific to investor i.
We obtain the first-order condition that determines the information choice:

max
σ−2
iη

− log(−U0)− ρici(σ
−2
i + σ−2iη )

⇐⇒ max
σ−2
iη

− log(−U0)− ρici(ρiEi)

⇐⇒ 1

2

1

σ−2i + σ−2iη + σ−2x /C2
= ρic

′
i(σ
−2
i + σ−2iη ).

⇐⇒ 1

2

1

ρiEi + E2
aggσ

−2
x

= ρic
′
i(ρiEi). (IA.75)

Example 1: linear cost function. We consider the case of a constant marginal cost for
any information acquired past the initial endowment: ci(x) = c1,i max

(
x− σ−2i , 0

)
. Note
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that in this case not all agents acquire information since σ−2iη > 0, so the actual precision is

σ−2iη = max

(
1

2ρic1,i
− σ−2i − E2

aggσ
−2
x , 0

)
. (IA.76)

We can rewrite the choice of information as a choice of elasticity:

Ek =
1

2ρ2i c1,i︸ ︷︷ ︸
Investor characteristics

−σ−2x

ρi
E2
agg︸︷︷︸

market elasticity

(IA.77)

Example 2: linear response to aggregate elasticity. To relate to the model of Sec-
tion 2, we ask if there is a reasonable family of cost functions that exactly gives rise to
equation (4). We are looking for a cost function such that Ei = α−βEagg. Equivalently, this
corresponds to Eagg = 1

β
(α− Ei). Plugging in the first order condition, this gives:

2ρ2i c
′
i(ρiEi) =

1

Ei + σ−2
x

ρiβ2 (α− Ei)2
(IA.78)

=def c̃′i(Ei) =
1

σ−2
x

ρiβ2E2
i +

(
1− 2ασ−2

x

ρiβ2

)
Ei + α2σ−2

x

ρiβ2

(IA.79)

The denominator of the righ-hand-side is a second degree polynomial, we solve for its
roots. The discriminant is:

∆ =

(
1− 2

ασ−2x

ρiβ2

)2

− 4
σ−2x

ρiβ2

α2σ−2x

ρiβ2
(IA.80)

= 1− 4
ασ−2x

ρiβ2
(IA.81)

Let us assume ∆ < 0. This is equivalent to ρiβ
2 < 4ασ−2x . In this case, we have, using

standard results on the primitive of the inverse of a polynomial:

c̃i(Ei) =

2 arctan

2
σ−2
x

ρiβ
2 Ei+

(
1−2ασ−2

x
ρiβ

2

)
√

4
ασ−2

x
ρiβ

2 −1


√
4ασ−2

x

ρiβ2 − 1
+K (IA.82)

The cost function is convex as long as the argument of the arctangent is negative, so:

Ei ≤ α− ρiβ
2

2σ−2x

. (IA.83)

We can see that if the right-hand-side of this condition is positive, the condition of ∆ < 0 is
automatically satisfied.
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After rescaling, 2ρici(ρiEi) = c̃i(Ei), or equivalently ci(x) =
1
2ρi

c̃i(x/ρi) we have:

ci(x) =
1

ρi

1√
2αβ̃ − 1

arctan

 β̃ x
ρi
+ (1− αβ̃)√
2αβ̃ − 1

+ K̃ (IA.84)

with β̃ = 2σ−2x /(ρiβ
2), and the condition α − ρiβ

2/(2σ−x 2) ≥ 0 becomes αβ̃ ≥ 1. We can
collect these results in a proposition.

Proposition 2. For any a > 0 and b > 0 so that ab > 1, assume the information cost
follows the function:

ci(x) = 0, if x < 0,

ci(x) =
1

ρi

1√
2ab− 1

arctan

(
b x
ρi
+ (1− ab)

√
2ab− 1

)
+K, if 0 ≤ x/ρi ≤ a− b−1

ci(x) = +∞, if x/ρi ≥ a− b−1, (IA.85)

where K is such that ci(0) = 0. This cost function is increasing and convex. Then the
optimal elasticity is:

Ei = E0,i − χEagg, (IA.86)

with E0,i = a and χ =
√

(2σ−2x )/(ρib).

B.5 Flexibility in information acquisition
We turn to the role of the flexibility in the acquisition of information for the degree of
strategic response. First we look at how σiη changes as we vary the aggregate elasticity C−2.
We take (IA.75) and using the implicit function theorem:

2

ρi

(
σ−2i + σ−2iη + C−2σ−2x

)
− 1

c′i(σ
−2
i + σ−2iη )

= 0

χ = −
dσ−2iη

dC−2
=

2/ρiσ
−2
x

2/ρi + c′′i /c
′2
i

=
σ−2x

1 + ρi
2

c′′i
c′2i

(IA.87)

The response depends on the curvature of the information acquisition cost function. If the
curvature is zero (as is the case in our linear cost example), then the response is highest. A
large curvature would elicit a weaker response.

B.6 Price informativeness
We define price informativeness for investor i as the ratio of the precision of their belief
about the fundamental when they condition on their private information and on the price
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and the precision of their belief using private information only:

Ii =
Var(f |µi, ηi, p)

−1

Var(f |µi, ηi)−1
=

σ−2i + σ−2iη + E2
agg σ−2x

σ−2i + σ−2iη

(IA.88)

= 1 + Eagg
Eagg
ρiEi

σ−2x

We also define the absolute price informativeness of the price as

Iabs = Var(f |p)−1 = E2
aggσ

−2
x . (IA.89)
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C Other Foundations for the Degree of Strategic Re-
sponse χ

C.1 Learning from prices
We consider a model in which agents can learn from prices, which highlights a distinct
mechanism from that of the previous section. Two main assumptions differ: agents cannot
acquire information, and there is residual uncertainty about the asset payoff that cannot be
learned. This setting leads to a new determinant of demand elasticity, beyond risk aversion
and prior information. When many traders are aggressive, prices are more informative. How
should one react? On the one hand, the extra information implies that price variation are
less indicative of future return, and that pushes the investor to trade less aggressively. On
the other hand, the extra information implies that returns appear less risky, and that pushes
the investor to trade more aggressively. Increased price informativeness reveals relatively
more about the fundamental than the payoff risk, exactly because of the presence of residual
uncertainty.56 Therefore the first effect dominates: the investor responds by being less
aggressive, χ > 0. This response is stronger when residual uncertainty is higher.

C.1.1 Setup

The asset trades at endogenous price p and pays off f + ε, with ε ∼ N (0, σ2
ε ). There is a

continuum of mass 1 of agents indexed by i. Each agent has CARA preferences with risk
aversion ρi. Each agent has a flat prior on f and receives an independent signal µi, such
that µi ∼ N (f, σ2

i ). The asset is in noisy supply x̄+ x with x̄ a constant and x ∼ N (0, σ2
x).

We look for a rational expectations equilibrium, with:

p = A+Bf + Cx. (IA.90)

C.1.2 Equilibrium

Learning from the price. After observing the price, agent i’s posterior belief about the
fundamental f is N (µ̂i, σ̂

2
i ), with:

σ̂−2i = σ−2i +
B2

C2
σ−2x , (IA.91)

µ̂i = σ̂2
i

(
σ−2i µi +

B2

C2
σ−2x s(p)

)
, (IA.92)

where the signal from the price is:

s(p) =
p− A

B
= f +

C

B
x. (IA.93)

56In the model of the previous section, the two effects exactly cancelled out. The response was coming
from changes in information acquired, which is shut down here.
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Taking the average over agents of type i (we use a law of large numbers in the population),
we have

Ei [µ̂i] = σ̂2
i

(
σ−2i f +

B2

C2
σ−2x

[
f +

C

B
x

])
(IA.94)

= f +
B

C

σ̂i
2

σ2
x

x. (IA.95)

Asset demand. Asset demand qi is given by the standard optimum portfolio choice:

qi =
1

ρi

E [f + ε|µi, p]− p

Var [f + ε|µi, p]
(IA.96)

=
1

ρi

µ̂i − p

σ̂i
2 + σ2

ε

. (IA.97)

Market clearing. The total demand for the asset must equal its supply:∫
qidi = x̄+ x, (IA.98)∫

1

ρi

1

σ̂i
2 + σ2

ε

[
f +

B

C

σ̂i
2

σ2
x

x− A−Bf − Cx

]
di = x̄+ x. (IA.99)

This gives:

B = 1, (terms in f) (IA.100)∫
1

ρi

1

σ̂i
2 + σ2

ε

[
B

C

σ̂i
2

σ2
x

− C

]
di = 1. (terms in x) (IA.101)

Plugging in the definition of σ̂i
2, we obtain∫

1

ρi

1

σ̂i
2 + σ2

ε

[
1

C2

σ̂i
2

σ2
x

− 1

]
di = C−1, (IA.102)∫

1

ρi

1

σ̂i
2 + σ2

ε

[
1

C2
σ−2x

1

σ−2i + 1
C2σ−2x

− 1

]
di = C−1, (IA.103)∫

1

ρi

σ̂2
i

σ̂i
2 + σ2

ε

[
1

C2
σ−2x − σ−2i − 1

C2
σ−2x

]
di = C−1. (IA.104)

Therefore we have:

C−1 = −
∫

1

ρi

σ̂i
2

σ̂2
i + σ2

ε

1

σ2
i

di, (IA.105)

−C−1 =

∫
1

ρi

1

1 + σ2
ε

(
σ−2i + 1

C2σ−2x

) 1

σ2
i

di. (IA.106)
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Define C̃ = −C, which is positive. We can rewrite:

C̃−1 =

∫
1

ρi

1

1 + σ2
ε

(
σ−2i + 1

C̃2σ
−2
x

) 1

σ2
i

di. (IA.107)

The left-hand-side of this equation is decreasing in C̃. The right-hand-side is increasing
in C̃. If C̃ → 0, the left-hand-side goes to ∞ and the right-hand-side goes to 0. If C̃ → ∞,
the left-hand-side goes to 0 and the right-hand-side has a finite positive limit. Therefore,
there is a unique solution to the equation, and a unique linear equilibrium.

C.1.3 Equilibrium elasticities

We now derive demand elasticities. We show how individual demand elasticities respond to
the aggregate elasticity. Demand is given by:

qi =
1

ρi

µ̂i − p

σ̂i
2 + σ2

ε

(IA.108)

=
1

ρi

σ̂2
i

(
σ−2i µi +

B2

C2σ
−2
x s(p)

)
− p

σ̂i
2 + σ2

ε

. (IA.109)

Therefore the slope of the demand curve is:

Ei = − 1

ρi

σ̂2
i

σ̂i
2 + σ2

ε

(
1

C2
σ−2x − σ̂i

−2
)

(IA.110)

= − 1

ρi

σ̂2
i

σ̂i
2 + σ2

ε

(
1

C2
σ−2x − σ−2i − 1

C2
σ−2x

)
(IA.111)

=
1

ρi

σ̂2
i

σ̂i
2 + σ2

ε

1

σ2
i

. (IA.112)

Here, we observe clearly the intuition for the role of price informativeness. When prices
are more informative, low σ̂2

i , expected returns respond less to the price, the numerator of the
first fraction. However, the perceived risk of the asset also decreases, the denominator of the
first fraction. Because of residual uncertainty σ2

ε , the effect on the asset risk is weaker than
the effect on expected returns: the ratio decreases and the trader becomes less aggressive.

More aggregate elasticity leads to more informative prices, so this mechanism will lead
to a negative response of individual elasticity to aggregate elasticity. Formally, note that∫
i
Ei = Eagg = C̃−1. Plugging in, we obtain:

Ei =
1

ρi

1

1 + σ2
ε

(
σ−2i + E2

aggσ
−2
x

) 1

σ2
i

(IA.113)

=
1

ρi

1

σ2
i + σ2

ε + σ2
i σ

2
εσ
−2
x E2

agg

(IA.114)

Clearly, the individual elasticity Ei is decreasing in the aggregate elasticity Eagg. Lin-
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earizing this expression, we obtain the counterpart of the degree of strategic response χ > 0:

χ = − dEi
dEagg

(IA.115)

=
1

ρi

2σ2
i σ

2
εσ
−2
x Eagg(

σ2
i + σ2

ε + σ2
i σ

2
εσ
−2
x E2

agg

)2 . (IA.116)

C.2 Price impact
We now consider a model in the style of Kyle (1989), in which investors have non-negligible
price impact and take it into account when making trading decisions. This leads to a
foundation for a negative degree of strategic response χ. Intuitively, when other traders are
aggressive, I face a very elastic residual supply curve when sending orders to the market. This
implies that my trades will not have a large price impact, hence I can also trade aggressively.

C.2.1 Setup

There are I investors indexed by i. Each agent has CARA preferences with risk aversion ρi:

Ui = Ei[−e−ρiWi ], (IA.117)

and initial wealth Wi. The gross risk-free rate is 1, and the random asset payoff f is dis-
tributed N (µ, σ2). The asset is in noisy supply x̄ + x with x̄ an exogenous fixed parameter
and x ∼ N (0, σ2

x).
As in Kyle (1989) we are interested in rational expectation equilibria with imperfect

competition. We look for a linear pricing rule p = A + Cx. We solve for the individual
demand strategies and look for linear strategies of the form:

di = di − Eip (IA.118)

C.2.2 Solving for optimal demand strategies

Investor i maximizes their profit taking as given the residual demand from other investors’
demand schedule. We use market clearing to find the residual supply curve:∑

i

di = x̄+ x

di = x̄+ x−
∑
k 6=i

dk +

(∑
k 6=i

Ek

)
p

p(di) =

(∑
k 6=i

Ek

)−1
︸ ︷︷ ︸

λ−i

di +

(∑
k 6=i

Ek

)−1
·

(∑
k 6=i

dk − x̄− x

)
︸ ︷︷ ︸

p−i

. (IA.119)
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To find the optimal demand of investor i for the asset, we write their program57

max
d

E{f − p(d)|p−i}d−
ρi
2
Var{f − p(d)|p−i}d2, (IA.120)

max
d

(µ− p−i)d− λ−id
2 − ρi

2
d2σ2.

The first order condition gives us:

di =
µ− p

ρiσ2 + λ−i
. (IA.121)

We can already see that stronger λ−i leads to less aggressive trading because of a larger
price impact. Remember that λ−i is the aggregate of demand elasticities of other investors,
a quantity closely related to aggregate elasticity. We now close the equilibrium to show this
relation more clearly.

C.2.3 Solving for aggregate demand elasticity

Given our original demand di = di − Eip, we are able to identify the linear terms as:

di =
µ

ρiσ2 + λ−i
; Ei =

1

ρiσ2 + λ−i
=

1

ρiσ2 + (Eagg − Ei)−1
, (IA.122)

where we define the aggregate elasticity:

Eagg =
∑
i

Ei. (IA.123)

Next we show that there is a unique solution for the aggregate elasticity. From the expression
in equation (IA.122), we remark that Ei solves a quadratic equation. We rule out the larger
of the two roots and the solution is58

Ei =
1

2

 2

ρiσ2
+ Eagg −

√(
2

ρiσ2

)2

+ E2
agg

 (IA.124)

To show that there is a unique stable equilibrium we consider the fixed point problem
F (x) = x, with F defined by:

fi(x) =
1

2

 2

ρiσ2
+ x−

√(
2

ρiσ2

)2

+ x2

 , (IA.125)

F (x) =
∑
i

fi(x). (IA.126)

57Note that expectation and variances are conditional on the residual demand curve p−i, which is equivalent
to conditioning on p.

58The larger root is such that Ei > Eagg which violates
∑

i Ei = Eagg.

79



The function F is positive, increasing, and concave. Moreover F (0) = 0, F ′(0) = I/2, and
limx→+∞ F ′(x) = 0, we conclude that there is a unique non-zero solution for Eagg as long as
I ≥ 3.

The relation derived in (IA.124) between Ei and Eagg is not linear. We can approximate
this equation linearly by Ei = E i − χEagg with

χ = −1

2

1− Eagg√
E2
agg +

(
2

γiσ2

)2
 < 0 (IA.127)

This expression gives bounds on the value of χ: −1/2 ≤ χ < 0.

C.3 Imperfect information
Assume your optimal elasticity is Ei = E i−χE [Eagg|Fi]. With perfect knowledge, you obtain:
Ei = Ēi − χEagg Assume the agent observes a signal Êagg = Eagg + ε (with variance σ2

ε ) and
has a prior Eagg ∼ N

(
Ē , σ2

)
. Then we have:

E
[
Eagg|Êagg

]
=

1
1
σ2
ε
+ 1

σ2

(
1

σ2
ε

Êagg +
1

σ2
Ē
)
. (IA.128)

Therefore:

Ei = Ēi − χ
1

1
σ2
ε
+ 1

σ2

1

σ2
Ē − χ

1
σ2
ε

1
σ2
ε
+ 1

σ2︸ ︷︷ ︸
<1

Êagg. (IA.129)

C.4 Partial equilibrium thinking
We repeat the calculation of Section 2.3 on the rise in passive investing in a situation with
partial equilibrium thinking.

We assume that all investors are homogenous and their initial elasticity is Ei = E0. What
happens to the economy if a fraction 1−α of these investors become passive? Their elasticity
reduces to zero. To model partial equilibrium thinking, we assume that active investors only
react to the effect of the switch to passive on aggregate elasticity and do not take into account
the collective response of other active investors.

Because investors are infinitesimal, this corresponds to forecasting a change in elasticity
of ∆E forecast

agg = −(1− α)E0. This implies that each active investor changes her elasticity by

∆Ei = −χ∆E forecast
agg = χ(1− α)E0. (IA.130)

Aggregating across all investors, the new aggregate elasticity is:

EPET
NEW = αE0 (1 + χ(1− α)) = αE0 + (1− α)χαE0. (IA.131)
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The new elasticity with partial equilibrium thinking is in contrast to our baseline model in
Section 2.3, ENEW :

EPET
NEW − ENEW = (1− α)E0αχ

αχ

1 + αχ
. (IA.132)

The difference is positive when χ > 0. Because investors do not account for the response of
others, they overreact to the initial change in elasticity. This leads to a relatively higher final
level of aggregate elasticity and is therefore akin to a larger degree of strategic response.
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D Data

D.1 Institutional holdings data
Institutional investment managers with $100 million or more in assets under their investment
discretion are required to disclose their ownership of Section 13(f) securities as of the end of
each calendar quarter to the SEC within 45 days after the end of the calendar quarter. The
filing requirement applies to both U.S. domestic investment managers, and, under certain
conditions regarding the course of their business, foreign investment managers. The official
list of 13(f) Securities is made available by the SEC shortly after each quarter end. It
primarily includes U.S. exchange-traded stocks, shares of closed-end investment companies,
and shares of exchange-traded funds.

We obtain data on 13F filings from 2001Q1 until 2017Q4 from Backus, Conlon, and
Sinkinson (2020). Mirroring their approach, we extend their sample until 2020Q4. To do so
we start with a SEC linking table, which provides a list with links to all 13F-HR and 13F-
HR/A filings of a given quarter. Based on those links, we scrape all filings, and subsequently
parse the filings based on a Perl script generously provided by Backus, Conlon, and Sinkinson
(2019). The script corrects common filing issues in 13F filings. Finally, we merge the scraped
13F data with CRSP and Compustat.

D.2 CRSP and Compustat
We obtain market capitalization data for stocks from CRSP and apply standard filters: we
keep stocks traded on NYSE, NASDAQ and AMEX, and filter to ordinary common shares
with share codes 10, 11, 12 and 18 in CRSP. These stocks make up the universe of all assets
in our model.

Additional stock-level information comes from quarterly and annual Compustat files. In
particular, we closely follow Koijen and Yogo (2019) and their data definitions for building
a set of stock characteristics: book equity, investment (defined as growth in total assets),
operating profitability (as defined in Fama and French (2015)), and dividend yield as a
fraction of book equity. Characteristics are winsorized at the 2.5% and the 97.5% level each
quarter. Characteristics that are denominated in dollar values, such as market equity and
book equity, are denominated in million dollars.

We match CRSP and Compustat based on the standard linking table on WRDS. Finally,
we use CUSIP identifier information from CRSP to merge the CRSP-Compustat merged
stock-level data to 13F holdings. We exclude stocks for which institutional ownership is
greater than 100% based on the 13F data.

D.3 Measuring passive investing
Passive investors are insensitive to prices. At each date, we identify passive investors as
investors with elasticity close to zero in a Koijen and Yogo (2019) type demand system:

log
wik

wi0

− pk = d0i + d′1itX
(d)
k − Efixed

i pk + εik, (IA.133)
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where X(d) contains log book equity. An investor is defined as passive if their fixed
elasticity is close to zero, i.e. Efixed

i < κ, for small κ. We choose κ = 0.06 to calibrate
the level of passive investing, and define a stock’s passive share as the ownership-weighted
average of an indicator that is 1 if the investor is passive, and zero otherwise. That is,

|Activek| ≡ 1−
∑
i

wikAi

exp(pk)︸ ︷︷ ︸
ownership share

1{Efixedi <κ}. (IA.134)

Appendix Figure IA.8 shows the the cross-sectional median of |Activek| over time. We
validate our measure in the setting of Russell index switching. Specification (4) of Appendix
Table IA.4 shows that our measure of passive investing in the cross-section strongly re-
sponds to stocks switching between the Russell 1000 and 2000 indices, by about 4% of total
ownership.

D.4 Additional data definitions
There are a number of additional data steps that define the final estimation sample.

Defining the outside asset. For the logit demand system we define any stock with
missing stock characteristics or CRSP share code 12 or 18 in a given quarter as part of the
outside asset for that particular quarter. Of the remaining stocks, any stock with fewer than
20 investment managers invested in it is also part of the outside asset.

Defining the household sector. Investment managers with fewer than 100 stocks in their
portfolio are filtered out, such that their assets are part of the residual household sector. The
residual household sector contains direct household holdings, but also an amalgamation of
holdings from small investment managers with AUM below the reporting threshold, certain
foreign investors, and investment managers with fewer than 100 stocks in their portfolio. As
in Koijen and Yogo (2019), this residual household sector is modeled as one investor in the
demand system, to ensure that the number of shares held adds up to the number of shares
outstanding.

Measuring the investment universe. We define any stock that an investment manager
has held over the past three years as part of her investment universe. This follows Koijen and
Yogo (2019), who show that the measured investment universe using this approach is very
stable over time. The investment universe is primarily used during the estimation procedure
to construct our instruments for a stock’s market equity as in equation (21), and a stock’s
aggregate demand elasticity as in equation (22).

Pooling investors during estimation. For our baseline estimation, we pool together
investors that hold fewer than 1,000 stocks in a quarter and are classified as active. In-
vestors are grouped based on their assets under management, with the number of groups
chosen such that on average, each group holds 2,000 stocks. Specifically, we assume that all
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investors within the same group have the same demand parameters, except for the constant
of equation (IA.149), which we leave as investor-specific (for example, this absorbs variation
in quantity of outside asset wi0). That is, we estimate equation (IA.149) at the group level
with an investor fixed effect.

Weighting investors during estimation. For the pooled regression in equation
(IA.150), we weight each observation such that each investor-group contributes equally to
the regression. That is, each observation receives a weight 1/|Ki|. For example, consider a
a simplified example with two investors and two assets. Investor A holds both assets, while
investor B holds only one of the assets. We would assign weight of 0.5 to each position of
investor A, and a weight of 1 to the observation for investor B. The estimate of χ is robust
to different weighting schemes, as shown in Table 2.
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E Identification Strategy

E.1 Moment conditions
We estimate the model using the method of moments. All of the moment conditions derive
from the identifying assumption of equation (23). We list these moments here:

E
[
εjk1{j=i}

]
= 0,∀i (IA.135)

E
[
εjkX

(d)
k 1{j=i}

]
= 0,∀i (IA.136)

E
[
εjkp̂k,i1{j=i}

]
= 0,∀i (IA.137)

E
[
εjkX

(e)
k p̂k,j1{j=i}

]
= 0,∀i (IA.138)

E
[
εjkÊagg,k

]
= 0 (IA.139)

E
[
εjkÊagg,kp̂k,j

]
= 0 (IA.140)

There are exactly as many moment conditions as model parameters.

E.2 Solving the reflection problem
One challenge for identification is the reflection problem. How can we separate the individual
component of demand elasticity from the strategic response to other investors? We show that
the presence of variation in investor population across stocks allows to solve this problem.
To isolate this argument from other identification concerns, we assume that we observe
individual elasticities, Eik. For exposition purposes, we focus on a simplified version of the
model in which E i does not depend on asset characteristics.

We provide sufficient conditions for the uniqueness of a decomposition of the individual
elasticities into investor-specific elasticities Ei and the strategic response controlled by χ.
After proving this result, we come back to the economic content and the empirical relevance
of these conditions.

Before stating the theorem, we introduce a few notations. We define the undirected
graph G of investor-stock connections. The vertices and the nodes are the investors i and
the stocks k. There is an edge between i and k if and only if i ∈ Ik. There are no edges
between two investors or two stocks.

Theorem 3. A decomposition of demand elasticities {Eik}i,k into individual elasticities {E i}i
and the degree of strategic response χ is unique if:

(a) The graph G of investor-stock connections is connected.

(b) Position-weighted averages of demand elasticities are not constant across stocks: there
exists k and k′ such that

∑
i∈Ik wik/pkAiE i 6=

∑
i∈Ik′

wik′/pk′AiE i.

Proof. Let us assume that there exist two distinct decompositions ({E (1)
i }i, χ(1)) 6=

({E (2)
i }i, χ(2)) and the two conditions (a) and (b) hold. Each decomposition for l ∈ {1, 2}
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satisfies the two conditions of the elasticity layer

Eagg,k =
∑
i∈Ik

wikAi/pkEik, for all k ∈ K (IA.141)

Eik = E (l)
i − χ(l)Eagg,k, for all k ∈ K and i ∈ Ik. (IA.142)

We subtract the decomposition of Eik for l = 1 from the decomposition for l = 2 and obtain:(
χ(2) − χ(1)

)
Eagg,k = E (2)

i − E (1)
i , for all k ∈ K and i ∈ Ik. (IA.143)

Here we see immediately that if χ(1) = χ(2), then for all i, E (1)
i = E (2)

i , thus violating the
initial assumption of distinct decompositions. Hence, we focus on the case of χ(1) 6= χ(2).

We define the function:

f(x) =

{
(χ(2) − χ(1))Eagg,x for x ∈ K
E (2)
x − E (1)

x for x ∈ I.
(IA.144)

We restate the equality of equation (IA.143) as:

f(x) = f(x′), if and only if there is an edge between x and x′ on G. (IA.145)

Therefore, since the graph G is connected: ∀x, x′, f(x) = f(x′), and f is a constant. We write
the constant f = a, and plug in the constant in the aggregation of individual elasticities:

Eagg,k =
∑
i∈Ik

wikAi/pkEik =
∑
i∈Ik

wikAi/pkE (1)
i − χ(1)

∑
wikAi/pkEagg,k (IA.146)

⇐⇒ (1 + χ(1))Eagg,k =
∑
i∈Ik

wikAi/pkE (1)
i (IA.147)

⇐⇒ (1 + χ(1))
a

χ(2) − χ(1)
=
∑
i∈Ik

wikAi/pkE (1)
i for all k, (IA.148)

where we use Eagg,k = a/(χ(2) − χ(1)). Equation (IA.148) violates assumption (b), which
concludes the proof.

The intuition behind theorem 3 is that identification relies on comparing the behavior of
one investor for two different stocks with different populations of investors. If this investor
trades less agressively when surrounded by more agressive investors, we conclude that the
degree of strategic response χ is positive. A challenge to implement this comparison is that
we already need to know the elasticity of these other investors. This is a chicken-and-egg
question. The ability to find a unique solution to this problem relies on being able to cycle
through investors with enough variation in composition: this is the essence of conditions (a)
and (b).

To better understand why these conditions are important, we show examples of how
the model is not identified when either (a) or (b) is violated. Starting with (a), let us
consider the case where each stock has its own non-overlapping population of investors. In
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this case, there is no identification. Because a given investor only invests in one stock, it
is not possible to tell if this investor is agressive because of her own characteristics or in
response to the other investors. As an example that violates condition (b), consider the
case in which all investors have the same size and relative portfolio positions such that:
∀k, k′, wikAi/pk = wik′Ai/pk′ . Investor composition is the same for all stocks and therefore
there is no information in comparing different stocks. Relatedly, we could also consider a
violation of (b) where all individual elasticities are identical across investors: E i = E . Then,
for all k we have

∑
i∈Ik wik/pkAiE i = E : the aggregate elasticity for all stocks is identical.

Intuitively, even though there is variation in investor composition across stocks, all investors
behave the same way in terms of elasticity. This is equivalent to having a single investor,
and we cannot separate individual elasticities from the response to other investors.

How can we assess these conditions empirically? The graph G of investors-stocks con-
nections can be observed directly in our data and we can assess immediately that condition
(a) is satisfied using known algorithms such as depth-first-search. Condition (b) is poten-
tially more challenging because it relies on parameter estimates E i. However, inspecting the
condition shows it holds generically. Condition (b) stipulates the equality of K linear forms
applied to the vector (E i)i. It is violated if and only if (E i)i ∈

⋂
k>1(wk − w1)

⊥, a set of
measure 0 for almost all combinations of wk. In addition, there is still the possibility of
verifying whether the condition is satisfied empirically, once the econometrician has found a
set of parameter estimates.

E.3 Numerical procedure
We describe our estimation procedure, which solves a series of nested problems.

Step 1. Given a guess for (χ, ξ) and {Eagg,k}k, we can estimate all remaining model pa-
rameters by two-stage least squares regression investor by investor. This corresponds to
estimating the following regression for each investor i:

log
wik

wi0

− pk − χ Eagg,k pk − ξ Eagg,k = d0i + d′1itX
(d)
k −

(
E0i + E ′1iX

(e)
k

)
pk + εik, (IA.149)

where pk and X
(e)
k pk are instrumented by p̂k,i and X

(e)
k p̂k,i. Estimating these regressions is

equivalent to solving the moment conditions (IA.135) to (IA.138).

Step 2. Given a guess for (χ, ξ), we look for equilibrium values of {Eagg,k}k. We start
from the aggregate elasticities implied by the model of Koijen and Yogo (2019). We run
step 1 above. With the newly estimated E i and the parameter χ, we solve explicitly for the
equilibrium elasticity they imply by solving the linear system of equations (14) and (18). We
update our guessed aggregate elasticity by taking a weighted average of the previous iteration
and these new implied values with weights of 75% and 25%. We repeat this updating process
until the values of {Eagg,k}k converge. This step ensures that our estimated model satisfies
the 2-layer equilibrium.
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Step 3. We estimate χ and ξ. We start from a guess for (χ, ξ) and run step 2 to find
the aggregate elasticities it implies. With these values, we estimate the pooled regression of
equation (19):

log
wik

wi0

− pk = d0i + d′1itX
(d)
k + ξ Eagg,k −

(
E0i + E ′1iX

(e)
k − χ Eagg,k

)
pk + εik, (IA.150)

using two-stage least squares with all the instruments of the investor-level regression, Êagg,k
and Êagg,kp̂k,i. This is a very large scale regression with many fixed effects and investor-
specific coefficients. We speed up the estimation of this large-scale regression tremendously
by taking advantage of the Frisch-Waugh-Lovell theorem. We absorb all individual-level
variables using investor-specific regressions, and are left with only the coefficients χ and ξ
to estimate in the pooled data.

Define as f(·) the function that maps the guess (χ, ξ) to estimates for χ and ξ in the
pooled regression, and define the fixed point function F (χ, ξ) ≡ f(χ, ξ) − (χ, ξ) as the
difference between the estimates from the pooled regression and the guess.

Step 4. The pooled regression gives F (χ, ξ). We use a bivariate quasi-Newton method,
in which we approximate the Jacobian of F numerically via finite differences by varying χ
and ξ by a small ε, to find a root of F (χ, ξ), which constitutes a fixed point for (χ, ξ). With
such a fixed point, we are sure that our estimates satisfy simultaneously all the moment
conditions of Appendix Section E.1 and the 2-layer equilibrium.

Algorithm E.1 summarizes the numerical procedure to obtain a fixed point for (χ, ξ) in
pseudo-code.

Algorithm E.1: Numerical procedure solving for a fixed point of (χ, ξ).
1 begin
2 I n i t i a l i z e s t a r t i n g va lue s (χ(0), ξ(0))
3 h ← 0
4 while (‖F (χ(h−1), ξ(h−1))‖ > tol) or (h = 0)

5 I n i t i a l i z e {E(0)agg,k}k at {Efixed,k}k
6 for n in 1 : N

7 Update inv e s to r −s p e c i f i c parameters c o n d i t i o n a l on {E(n−1)
agg,k }k and (χ(h), ξ(h)) ( Step 1 ) .

8 Aggregate to determine {E(n)
agg,k}k c o n d i t i o n a l on (χ(h), ξ(h)) ( Step 2 ) .

9 end
10 Determine f(χ(h), ξ(h)) , i . e . e s t imate (χ, ξ) c o n d i t i o n a l on {E(N)

agg,k}k ( Step 3 ) .
11 F (χ(h), ξ(h))← f(χ(h), ξ(h))− (χ(h), ξ(h))

12 Ĵ(χ(h), ξ(h))← 1
ε
(F (χ(h) + ε, ξ(h))− F (χ(h), ξ(h)), F (χ(h), ξ(h) + ε)− F (χ(h), ξ(h)))

13 (χ(h+1), ξ(h+1))← (χ(h), ξ(h))− Ĵ−1(χ(h), ξ(h))F (χ(h), ξ(h)) ( Step 4)
14 h ← h + 1
15 end
16 return (χ(h), ξ(h))
17 end

Lines 2 and 3 initialize the numerical procedure. Starting values (χ(0), ξ(0)) are based
on past experience with the algorithm as the Newton method may fail for starting values
too far removed from a root of F . Line 4 starts a while loop that ends when a solution is
found, i.e. when the norm of F is below some small tolerance level. Lines 5 to 9 solve for
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an elasticity equilibrium conditional on the current iteration (χ(h), ξ(h)): First, we initialize
aggregate elasticities based on a fixed elasticity model (IA.133). Then, we iterate back and
forth between estimating investor-specific parameters conditional on aggregate elasticities
and aggregating individual elasticities until an equilibrium is found. In line 10 we estimate
the pooled regression of equation (IA.150) conditional on {E (N)

agg,k}k. Line 11 updates the fixed
point function. Line 12 approximates the Jacobian of F at (χ(h), ξ(h)) via a finite difference
approach. Line 13 updates χ and ξ via a Newton step, and line 14 increases the iterator.
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F Trading Big and Small Stocks
We investigate whether firms trade big and small stocks differently. Our estimates of elas-
ticities by stocks suggest that the demand for large stocks is more inelastic (see Figure 3).
To explain this result, one hypothesis is that large stocks mechanically tend to receive a
high portfolio weight and that investors are unwilling to adjust their largest positions. For
example, a 10% relative increase in portfolio weight would create much larger tracking error
to the index for large positions than for small positions. Also, the granular nature of large
stocks imply that they have fewer substitutes.

To complement our structural results and investigate this hypothesis, we compare the
trading activity of investors across the distribution of their portfolio. For a given investor-
quarter, we compute for each stock the squared relative change in the number of shares:

Trading Activityi,k,t =

[(
Ai,twik,t

pk,t
− Ai,t−1wik,t−1

pk,t−1

)
/
Ai,twik,t

pk,t

]2
(IA.151)

We sort positions by portfolio weights, and compute the ratio of the cumulative sum of
trading activity to the total sum. This gives us a relation between the percentile of portfolio
weight and the cumulative share of total trading activity. We average this relation within
size groups of investors and present our results in Figure IA.1 for various dates.

If trading activity is as intense for all portfolio weights, this curve should coincide with
the 45-degree line. Instead, we see that the curve is always above the 45-degree line and
particularly flat along the largest investor positions. This implies that there is relatively
less trading activity for the largest stocks. In addition, we observe that this pattern is more
pronounced for the largest investors (panel D) than for small investors (panel A). Because
larger investors are more important for the biggest stocks, this will amplify the lack of trading
activity for the biggest stocks.
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Figure IA.1. Trading activity across portfolio positions. Figure IA.1 presents
the cumulative share of trading activity (defined in equation (IA.151)) by quantiles of
investor portfolio weights. We aggregate the statistics by date and quartiles of assets
under management.



G Appendix Tables

Table IA.1. Estimates of the degree of strategic response χ under
alternative specifications starting 2003Q3

Estimates for χ

Median 25th pct. 75th pct.

(1) Baseline Specification 2.21 1.85 2.75

(2) BE-weighted Instrument for Eagg 1.91 1.54 2.29
(3) Additional Controls 2.49 2.09 3.28
(4) AUM-weighted Regression 2.3 1.86 2.77
(5) Book-weighted Regression 2.24 1.77 2.68
(6) Investor-Type Grouping 2.46 1.96 2.93
(7) Constant χ 2.07

(8) No Instrument for Eagg 1.27 0.88 1.59
(9) No Instruments 1.01 0.73 1.41

Table IA.1 presents statistics of estimates of χ across dates (2003Q3–2020Q4) under various specifications.
Our baseline specification (1) estimates χ given aggregate elasticities Eagg,k each period via the regression:

log
wik

wi0
− pk = d0i + d′1iX

(d)
k + ξ Eagg,k −

(
E0i + E ′

1iX
(e)
k − χ Eagg,k

)
pk + εik,

where X(d)
k contains log book equity and log book equity squared. X(e)

k is log book equity. Active investors
with fewer than 1,000 stock holdings are grouped together based on their assets under management such
that each group on average contains 2,000 stock holdings. The regression is weighted such that each
group’s weights sum to the same constant. Specification (2) shows estimates of χ based on the book-equity
weighted instrument. Specification (3) adds additional characteristics to X

(d)
k ; profitability, investment

and dividends relative to book equity. Specification (4) value-weights the regression by weighting investors
by their AUM. Specification (5) similarly value-weights the regression by weighting investors by their book
assets. Specification (6) groups investors both by investor type and AUM. Institutional investors whose
type we cannot determine are bundled together in a separate group. Specification (7) imposes for χ to be
constant across time in the estimation, with each year receiving equal weight. Specification (8) reports
results without instrumenting for the aggregate elasticity Eagg. Specification (9) additionally removes the
instrument for prices.
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Table IA.2. Summary statistics of aggregate elasticity Eagg with book-
equity weighted instrument

Panel A: Statistics of average elasticity across stocks

Average 25th pct. Median 75th pct.

Elasticity Eagg 0.504 0.428 0.482 0.569
Fixed elasticity 0.389 0.357 0.389 0.442

Panel B: Regression coefficient (by dates) of elasticity on size

Average 25th pct. Median 75th pct.

Elasticity Eagg −0.111 −0.12 −0.104 −0.091
Fixed elasticity −0.0286 −0.0309 −0.0272 −0.0249

Panel C: Residual cross-sectional standard deviation of elasticity

Average 25th pct. Median 75th pct.

Elasticity Eagg 0.0548 0.0438 0.05 0.0591
Fixed elasticity 0.0842 0.0739 0.0826 0.0917

Table IA.2 presents statistics of the aggregate elasticity Eagg,k,t using the book-equity weighted instru-
ment. We estimate the elasticities in our baseline model and in a specification with fixed elasticities
(χ = 0 as in Koijen and Yogo (2019)). Panel A has summary statistics of the average elasticity by date.
Panel B shows summary statistics of the coefficient βt from the the regression Eagg,k,t = αt+βtpk,t+ εk,t
by date. Panel C reports summary statistics of the cross-sectional standard deviation of the residual
from the regression described in Panel B. The sample period is 2001–2020.
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Table IA.3. Change in aggregate stock-level elasticity Eagg,k on the
active share using estimates from the model with a constant χ

Change in Elasticity
(1) (2) (3) (4) (5)

Change in Active share 0.321*** 0.462*** 0.441*** 0.412*** 0.428***
(0.058) (0.028) (0.026) (0.025) (0.049)

Date Fixed Effects Yes Yes Yes Yes
Stock Fixed Effects Yes
Controls Yes Yes
Estimator OLS OLS OLS OLS IV
N 50,292 50,292 49,661 50,292 10,619
R2 0.017 0.269 0.282 0.318 0.627
First-stage F statistic 9.444
First-stage p value 0.000

Table IA.3 reports a panel regression of annual log change in stock level elasticity Eagg,k on the annual log
change in the active share |Activek|. We use the estimates from the model with a constant value of χ over
time. Column 2 adds date fixed effects. Column 3 adds stock fixed effects. Column 4 uses date fixed effects
and controls for lagged book equity and annual log changes of log book equity. Column 5 instruments the
log change in the active share |Activek| between Q1 and Q2 in any given year by two indicator variables
corresponding to stocks switching between Russell 1000 and 2000 in either direction. In this column, the
sample is restricted to stocks with CRSP market capitalization ranked between 500 to 1500 as of the end
of Q1. The sample period is 2001–2020 for columns 1-4, and 2007–2020 for column 5. Standard errors are
2-way clustered by date and stock for columns 1-4, and clustered by date for column 5.
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Table IA.4. Change in aggregate stock-level elasticity Eagg,k on the
active share around Russell index reconstitution

Log Change in Elasticity Log Change in Active share
(1) (2) (3) (4)

Log Change in Active share 0.389*** 0.431***
(0.066) (0.021)

Log Change in Book Equity -1.158*** -1.159*** -1.151*** 0.018
(0.049) (0.049) (0.050) (0.018)

Lagged Book Equity 0.005 0.005 0.007 0.003
(0.007) (0.007) (0.007) (0.002)

Switch from Russell 2000 to 1000 0.017*** 0.035***
(0.004) (0.008)

Switch from Russell 1000 to 2000 -0.011 -0.043***
(0.006) (0.012)

Date Fixed Effects Yes Yes Yes Yes
Estimator IV OLS OLS OLS
N 10,619 10,619 10,619 10,619
R2 0.748 0.748 0.670 0.090
First-stage F statistic 9.444
First-stage p value 0.000

Table IA.4 reports a panel regression of log change in stock level elasticity Eagg,k on the log change in the
active share |Activek| around Russell index reconstitution, in particular between end of Q2 and Q1, from 2007
to 2020. The sample is restricted to stocks with CRSP market capitalization ranked between 500 to 1500
as of the end of Q1. The active share |Activek| is instrumented by two indicator variables corresponding to
stocks switching between Russell 1000 and 2000 in either direction. We use the estimates for Eagg,k from the
model with a variable value of χ over time. Columns 2 and 3 show the corresponding OLS and reduced-form
regressions, respectively. Column 4 is the first-stage regression. Standard errors are clustered by date.
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Figure IA.2. Effect of an increase in passive investing.
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Figure IA.3. Distribution of the degree of strategic response χ across
dates. Figure IA.3 presents an histogram of our estimates of the degree of strate-
gic response χ for each date between 2001 and 2020. The median estimate over
the time-period is χ = 2.15 (dashed red line).
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Figure IA.4. Time-series of the degree of strategic response χ. Fig-
ure IA.4 shows the time-series of the estimates for the degree of strategic response
χ. The median estimate over the time-period is χ = 2.15 (dashed red line).
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Figure IA.5. Estimates of χ using the book-equity weighted instru-
ment. Figure IA.5 presents an histogram of our estimates of the degree of strate-
gic response χ where the instrument for aggregate elasticity weights portfolios by
book equity, for each date between 2001 and 2020. The median estimate over the
time-period is χ = 1.91 (dashed red line).
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Figure IA.6. Relevance condition for the the book-equity weighted
elasticity instrument. Figure IA.6 shows the first-stage F-statistics
(Kleibergen-Paap) for the instrument of price times the aggregate elasticity when
the instrument of the aggregate elasticity is weighted by book equity. The dashed
red line is the critical value of 10.
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Figure IA.7. Net assets of passive and active funds. Figure IA.7 shows the net
assets of domestic mutual funds and ETFs in trillions of dollars (year-end) for passive
funds (black solid line) and active funds (blue dashed line). Source: ICI (2020).
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Figure IA.8. Fraction of active investors. Figure IA.8 reports the fraction
of active investors according to our model. For each stock, we compute the ratio
of total position of active investors and the market capitalization. We report the
median across stocks.
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Figure IA.9. Distribution of individual-specific elasticities E ik. Fig-
ure IA.9 shows the quantiles of the distribution of individual elasticities E ik across
investors for each stock and each date. We average the quantiles for each date
to plot their time series. The black bold line is the average across investors. The
two thin grey lines represent the 25th and 75th percentiles. The two dashed grey
lines represent the 10th and 90th percentiles. And the solid blue line represents
the average individual elasticities of the household investor.
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Figure IA.10. Decomposition of the change in aggregate elasticity for
the the book-equity weighted elasticity instrument. Figure IA.10 shows
the decomposition derived in equation (28) over time, based on elasticities esti-
mated from the book-equity weighted instrument for Eagg,k. We compute each
term of the decomposition for each date and accumulate the changes over time.
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